
of phis runlacatoin may re pmorungid trum
THE YUPRANTSNDKKT OF BXCUKENTM
GOVERNHENT PRINTINO CYICE
Washincitun, ! 1
AT

- CYNTX JYK COHY

LETTER OF TRANSMITTAL.

$$
\begin{aligned}
& \text { Department of the Interior, } \\
& \text { Bureau of Enocation, }
\end{aligned}
$$ Washington, February 9, 1917 .

Sus Thi courses of study in our elementary and secondery schools have been accopted largely, on tradition and without intolligent criticism as to their adaptation to modern conditions and noods or thoir educational value. In some subjects much new material has bean introduoed from time to time, while consarvative tendencion have prevented the elimination of the old and outgrown, thus resulting in a congestion of material detrimental to the interesta of the subjecta and to the proper balance of the entire curriculum. This has been especially true of arithmotic as a sehool subjoct. There is now, however, a tendency everywhere to reorganize the surriculum both of elementary and of secondary schools, to the and that each subjeat may have its proper share of time and atcention. That this work of readjustment in arithmetic may be doce intelligently, it is. very desirable that those engaged in it may have as complete knowledge as passible of the development of this subject and of past as well as present practice in regard to it. I therofore reoommend for publication as a bulletin of the Bureau of Education the manuscript transmilted herewith, giving a history of arithmetic in the schools of the United States.'
Respectfully submitted.

> The Secretary of the Interior.
P. P. Claxton,
Commissioner.

3

PREFACE.

The arithmetic with whirh the American schoolboy of the twentieth century wreatles differs in many resperts from the "ryphering" which was truly a stumbling block to many a child in colonial dars. Not only have there been significant changes in the subject matter of arithmetic, but akso in the aim of instruction, in the place of arithmetic in the plan of education, and in tho methods of teaching the gubject. In fart many of the distinguishing characteristics of arithmatic as a twentieth century school subject are products of the nine menth century. It has bern the purpose of this investigation to trace in some detail the development of arithmetic as a schonl sub. ject and the methods of traching it in the United States, and fo show the influence of Warren Colburn in stimulating and directing this development.
It is a plessure to acknowledge indebtedness to those who inspirad and encouraged this repearch and to those who have assisted in making accessible the sources; in particular, Prof. W. W. Charters, of the Univarsity of Missouri, who finst mentioned the problem, and Profs. S. C. Parker and G. W. Myers, of the University of Chicago. for their direction and helpful criticism.

Emporia, Kans.
4

> Walter Scott Monrol.
$\dot{\gamma}$
-

Bic

GEVELOPMENT OF ARITHMETIC AS A SCHOOL SURJECT.

PIBT I. THE CIPHEEINO BOOE PEBIOD: FROM THE BREINNING IN THR COLONLLS EP TO 1821.

- Chapter 1."

the place of arithmetic in colonial education.
At the time of the colonization of America in the first half of the soventernth century, arithmetic was not considered iswontial to a byy's oducation endess he was to enter commercial life or cortain crades. The instruction in arithmetio was ofton given in a moparate school, called a writing acheol, or a rockoning sabool. When arithnatic was taught in the grammar schools it was very rudimentary. ${ }^{1}$ Not only was this true, but anong the nobility and the aristocracy of the educated, arithnetic was leoked upon as "common," "vilo," "medhanio," becauso it was the arcomplishment of clerks, artisans, tradesmen, and "uthers whe bure no signs of heraldry." Consenyumaly, it was a subject beneath the dignity of a looy undess he was "less capaple of learning and fituest to be put to trades,""
Such was arithmatic and the , place it uncupied in edunation in Europe at the time when the American olovies were settled. The calonists had grown to maturity in European' environment and had been educated in Europoan schoobs. When they came to Arperica, they brought with thom traditions and ideals which influencod their schoobs and their plan of aducation.
Dutch New York.-The first entuldernents in Now York' were made by the Dutch West India Co., which was chartend in 1621 by the Suthe-General of the United Netherlands. To this company was given a monopoly of Dutch trade within cartain aroas. The Dutch nation had produted some of the most important commercial centers of Europe, and a nation which had attained such commercial prominence could not neglect arithmetic. When they arrived in America in the interast of a huge commercial enterprise, tho Dutch colonists brought with them this attitude wward arithmetic. Prof. Kilpatrick says:

What might be colled the afficial Dutch program lor the colocinte wio that promulgated by the clamis in 1636 in the inatruction "for achoolmastors going to the East or Weot Indies."

He is winstruct the youth in meading, writing. cyphering, and arithmotic, with all zeel and diligronce, he is alve to implant the fundamental principlee of the trusius Chriatian meligion and malvation, by menan of catechizing; the is wo teach thent the
 their manbere and bring tham as fer es ponible to modeety and peogriety.'

This official cisticulum was not uniformer carried out, according to Prof. Kilpatrink, who has examined the available nomords with care.' . In Now Amstendam (now Now York) arithmotic was always included in the curriculum, but in the outlying villagee, axcopt Albany, which was a commencial cantar, arithmetic doen not appar to have been given a piane in the education of the childran. In thene
 and arithmetic was not considered a nowessary part. parhajpa not ovan a dosirable part, of education. This copdition amphasizas that arjthmetic was considered by the early Pratch colonista to bu a practueal subjeot nocoseary for thonse angaged in trade and rommerre, hut not a subject preasesing general oducational value.

Now England. -The Now England colonien wam mettlad hy the Puritans, who camo to Amorica in order that they might surum religious froedom. So atmong was their desin ${ }^{\text {on }}$ worship according (a) their beliefs and to parpetuate their chumb dortsines that they braved the long cesan voyago and the hardships of an unknowil and wild land. Tho enentiment of the first settements was probably exprassod by a mambar of the Masachumetta company whan he said. in 1629: "The propagation of the Gospal is the thing wo do profess above all towo our aim in mettling thin plantation." "

A lotter pritten in 1629 describing the colonists of Salom says;
They live unblameable and without reproote, and domonse theruselue in style and curteotu towarde yo Indinas, therely to draw them to allect our, jwnewn and coneotuently our heligion, an aloot to endeavour to gett mome of their rhildreti up to roming and conerquonulye to roligion whiter they are yous".

The orders of the General Court of Maseachuselts in 1642 and in 1647 amphasize the perpotuation of their religion as the dominant aim in oducation, and although both roading and writing am mentioned in the order of 1647, no mention is made of arithmetic. A similar law of Connecticut ${ }^{4}$ in 1650 likewise makes no mention of sithimetic.

However, school practice can not be deducad with any certaintry from official acts. The town records for many of the early settlements have been made accessible in the form of town histories, and these fumish much evidence of what was taught in the first schools of Now Enchand. In the Memorial History of Bonton thare are two

[^0]
, refarances to the echool proctice. The following is quoted from the - governur's jourual for the year leas:

Livere free achool were erected, wat Roxbary (for the maintemance whered. every unhabitant bound moen boum or had for a yenty alborreace forever) and at Bertin, where they made an onder wallow Ave ver 60 pounde to the racter and a boum, and 30 pounde w an ubber, who abould aloo weark whend and mrite and cipphax, and linlimas whikitren to be taughe treoly, and the chaye to the by yearly mntribūtion - pither by voluntary alhomance, or by rate of such as refuned, etc.; and this order mes onfirmed by the ganalal court (blant). Other town did the lite, providing maintotume by mevriol meane"

This would lead one to conclude that arithmetic was taught in the "free achool" of Boston. Philemon Pormont was' the fint Boston whimotmavter, beginning his labors in 1635 . Vittlefield expreseest the opinion that, since be was spoken of as "Brother" and not given the title of "Mr.," "hen was little more than a writing mastar" and taught only the alementary branches."
Mr. Daniel Maud was the second veacher, asd from his title he probubly was a nuester of arts. According to latuefield it is probable that boith Mud and Pormont taught at the same time, the former giving instruction in the clastacal studice and the latter in the common branchee.' If thís is true, arithmetic was probably one of the common hranchew and was eaght in the firat year of this school's existance. The next reference to the weshers of this exhoul bears the data of 1050 .
"It is also aymed on that Mr. Wordmansey, the achoolmaster, shall have fiftye pound p. ann. for his Teaching ye Schallers, and bis proportion be madt up by ratte" In 1666 the wwn "agreed wilhMr. Dannell Hehchman for $£ 4$ per ann. to assist Mr. Woodmansey, in the Grammar Shoole, and teach Children to wrightr the year to begine the 4 th of March 65/6." "

Arithmetic is not mentioned in this statement, although it may have been included in the writing. The view hes bewn expressed thet religion crowdad the dementary subjecta, particularly arithmetic, dot of the school: I? this is true, and the purpose of the settlement of Boston together with the general character of the Puritans tends to confirm it, little or no arithmetic was taught in this "free school" of Boston after the first fer years of its existence. But in'baddition to this "free school," which was known as the Boston Latin School, there were other facilities for arithmetical instruction. "In 1667 Will Howard and in 1668 Robert Cannon ware licensed to keep a writing school (in Boston) to teach children to write and to keep

[^1]accoutnts." 1 Also the second public eahool eatablished in Boston was a writing school, in 1684, in which arithmetic and writing were taught. Thus, even though arithmetic was crowded out of the "free school" in Boston, facilities for giving instruction in arithmetic ware provided in theee special schools.
'Concerning the schools of Salem we find this reference, bearing date of July 20, 1629: "M. Skelton was chosen pastor and Mr. Higginson tenchar and they were consecratad to their respective offices." ${ }^{2}$ In this statement there is no mention made of what was taught, and the earliest reference to arithmetic being taught in the schools of Salam is the following, which bears the date of 1712:

Ao Mr. Emerson had died, a committee ane choeen to procure a suitable Grammar schoolmaster to ye instructing of youth in Grammar learning and tw fitt, them for ye Collidge and also to learn them to write and cypher and to perfect them in reading. ${ }^{3}$.

On September 1, 1712, "Nathaniel Higginson commenced the achool for reading, writing, and cyphering." ${ }^{2}$ Arithmetic as a school subject is mentioned in 1714, 1716, and later. In 1752 this itam appears: "After the first of May, all boys who go to the Grammar achool must study Latin as well as read, write, and cypher." "

From these statements it appears quite certain that arithmetic occupied a fixed place as a school subject in the Sulem grammar school in 1712 and after. For the period before 1700 the absence of data makes only speculation possible, but Salem, like Boston, early became a center for trade and commerce. Hence it is probable that facilities existed for giving instruction in arithmetic before 1712.
: Dedham, Mass., was founded in 1636, though its history really dates from 1644, which is the date of the establishment of the first sehool. The following statement shows what was taught in this school in 1853:
: 18 of ye 1 mo. Aeemb Job. Kingobery; Fra. Mhickering, Lieft. Fisher, Job. Dwight, Bargt Fiaher \& Elia Luahee, Pet. Wpodward Agreed with Jacob Farrow to keep the Schools to begin 28 of 1 mq . 1853 to 20 L pran. to be payed in town paye being merchantible at the end of each halie yeare the one halfe of the anid oumes. he undertakes'to teach to read English and the Accidence \& to write \& the knowledg \& art of Arithmetici of the rules a prictice thiereot: thit to be p'posed the towne."

A latar contract for the year 1656 reads as follows:

9 of 11 mo . 165 f . Agreed Michaell Metcalio for to keep the echool fur the year insuinge, the said Michael doe undatate to teach the children that shall be sent to him to reedo English and to write?

I Jomph B. Palt: Annalis ofBalem, D. 100

- Iblid, p. 460.

S'a told., p. 48.

- Curion Btartar: The fans iols and Tweobera of Dedham, Masschusetta, p. 18.

Only reading and writing an mentioned in this sacond contrict, but in view of what appears to have been the prevailing prictice in Dedham and because of additional ovidence, it is probsble that arithmetic was taught by Michanl Metcalfe. In commenting upon this point, Mr. Slafter says:
It is hardly to be supposed that Mr. Metcalfe taught only reading and wifing, but rather he agreed to teach thee at least to all the pupils. There in now in existence the identical arithmetic which he uned as a teacher of the echoot. This bukk, un enlarged edition of Robert Record's arithmetic, whe publiahed in 1630 end is nuw in the archivee of the Dedham Historical Society.'

In 1663 a contract with John Swinerton specifies that "The said Mr. Swirerton is to teach such male childeringe as are sent to him to write \& read \& the use of retmitich as they are capable.'" 'In 1667. it was "igreed with Mr. Samuel Man, to teach the male Children of this towne that shall be sent to him in English Writeing, Grammar, and Arithmeticke." ${ }^{2}$ Michael Metcalfe was engaged again, 1679, "to teach all male chikdren that shall be sent to him to Read and wright and cast accounts." "

At Plymouth a school was established in 1635, "in which a Mr. Morton taught 'to read, write, and cast accounts.'" s At Ipạwich a' school committee was provided for in 1652 "who shall sleo consider the best way to make provision for teaching to write and cast accounts." A contract with a teacher at Charlestown in 1671 specifies "that he shall teach to read, write, and cypher." The writer of the History of Hadley makes this comment upon the early schoals "The master, with rare exceptions, was a man of collegiate education, and he instructed some in Groek and Latin, but most only in reading, writing, and arithmetic." * The first settlement at Newbury was in 1635, and the first school was established in 1639. In 1658 the town paid a fine under the law of 1647 for providing no grammar school. At a town meeting in 1675 "it was voted to have a schoolmastér got to teach to write \& read and cypher and teach a grammar schoole.". Arithmetic is also specified in contracts dated 1687, 1690, 1691, 1696, 1709-10, 1711-12. ${ }^{10}$ The porition was held by the same teacher from 1696 to 1709 , and probably the other dates represent only the employing of new teachers. In any case we have a fairly continuous record for 25 years, during which time arithmetic was specified in the teacher's contract, and the presumption is that it" was taught as early as 1658, certainly as early as 1675.

```
10p. oft., pp. 10-18.
` Cerlon Blatter: Op. olt.,p. }20
: Carlon 8balter: Op. dit., p. $2.
- Ondoe Elustert Op, Ett., p. 24.
```



```
' Riohard Frothingham, ELbtory of Charluctown, p. 17f.
8ylvectar Judd: Eintory of IImaloy, p. 66.
```



```
myd., pp. 308-40.
```

On the pthar hand, aritbmotic is not mentioned in the contracts in a number of towns. . For. aramphe, the town of Dorchesiar voted in 1630 . that, "There shal bu a rent of 200^{10} yeerly to be payd to such es achoolmanter as shall ondartake to teach english latin and othr tongues, and also writipg." ' With reference to the first teacher, Mr. Waterhouse, the town records contain this:
It is ordered that Mr. Waterhouse shall be dispensed with concerning that clause of the order " " where he is bound to teach to write it shal be left to his liberty in that poynt of teaching to write, only to doe what he can conveniently therein. ${ }^{2}$

Later contracts likewise contain no mention of arithmetic.
In Connecticut, arithmetic is not mentioned in the contracts of a number of towns with their teachers, although reading and writing are and frequently also Latin.' However, the New Haven Court in 1690, decreed that-
two free achoole be eotablished in the colony, one at Hartford and the other at New Haven, where the chlldren may come "after they can first read the Pealtur, to trech ouch reading, writing, aritimetic, the Latin and Greek tongues." "

Pennsylvania.-William Penn came to America in October, 168 ? In March, 1693 , the general assembly passed numerous bills relative to the future welfare of the colony of Pennsylvania. The following provision concerning education was contained therein:

And to the end that poor as well as rich may be instructed in good and commendable learning, which is to be preferred before wealth, be it dc. that all persons in this province and territories thereof, having children, and all the guardians or trustces of orphains, shall cause such to be instructeil in reading and writing; so that they may be able to rend the Scriptures; and to write by that thme they attain to twelve yeare of are; and that thes they be taught some useful trade or atill, that the poor may work to live, and the rich, il they become poor, may not want. ${ }^{\text {a }}$

Although arithmetic is not mentioned, it seems to have been recognized as having a legitimate place in the curriculum, for we find that on December 26 of the same year a council held at Philadelphia acted as follows:

The Governor and Provincial Oouncil, having taiten into their serious consideration the great, ndoomity then is of a achoolmater for the inotruction and anber education of youth in the town of Philadelphits eant for Enoch Flower, an inhebitant of the said town, who for twenty yeara peat hath been exercised in that care and emiployment. in England, to whom having communicated their minds, he embraced it upon thesefollowing ternas: to learn to reid English, 40. by the quarter, to learn to read and write, 6a: by the quarter, to learn to read, wite amed cat mecomat, 80. by the quarter; for bounding a scholer, that is to may, diet, weshins, lodeing and eabooling ften pounds for one whole year.
${ }^{1}$ Wirism Dasa Oreatt: Good OId Dorotenter, p. 290.

- Ibld., D. 200.

- E1in T. Clows: Op. eft., p. 281.
- Amb W, Cipws: Op, cth, pp. 31-8\%?

. Delaware and Now Jerey. The remaining oolonieq, exhibit no. striking educational oheracteristios. Delaware and New Jervey show something of the characteristics of both New York and Pennsylvanija. New Jertey was oritinally inclodod ini New York, aind lator West Jersey was a part of Penmeylvania, Delaware was first settlod by the Dutch and Swedes, but later came under the control of Pennsylvania.

In Delaware the design of the "Friends' Publio Sohool," now known as the "Winliam Penn Charter School," is set forth in the preamble to the oharter as follows:

Whereas the prosperity and wellure of any people depend, in great measure, upon the good education of youth and their carly introduction in the prinriplen of true religion and virtue, and qualifying them to serve their country and themoelves by educating them in reading, writing, and learning of languages, and weoful arts and ociencer suitable to their eex, age and degree, which can not be effected in any manner 00 well as by erecting public achoole for the purpoees soresaid, etc.'
The spirit of this cand the content of the oducation outlined is almost identioal with the provieions made for education in Pennsylvanis. The mention of "useful arts and sciences suitable to their. sex" probably means arithmetic for boys.

Southern colonies.-To ihe seuth of Pennsylvania, the population was scattered on great plantations and not collected in villages and rities. The education of the masses was. almost wholly neglected. The rioh employed private tutors. Sometimes instruction was given by the rainister or by an indentured servant who possessed education. The aim of this education was usually to prepare for college and did not inolude instruction in arithmetie. ${ }^{2}$

When the legislatures of the southern colonies registered their attitude on education, arithmetio was usually included in the sohool curriculum. For example, in 1710 the Legislature of South Carolina passed "'An act for the Founding and Ereating of a Free Sabool for the Use of the Inhabitants of South Carolina." It says in part: . .
XI. Aad be it further anacted by the suthority aforemid, that the parmon to be master of the eaid. achool, ahall be of the religion of the Church of England; and conform to the sume, and shall bepapable to teanh the fearned languages, that is to cay, the latin and Greak tonguee, and also the useful parts of the mathematica.
KV. And becimes it is necemery that a it permon reach the youth of this province to write, and abso the prisciplot of valger adthmetic and merchants' accoints, Be it therefore enacted by the authority aforeaid, that a fitting person ahall be nominated and appointed by, the said sompaiviocers, to teach writing, arithmotic, and magr chants' accounts. ${ }^{\text {. }}$

Two yoara lator thase is reoord of an appointment in whichJohn Douglan shak be and is hereby declared to be Muever of a Orammar Bechool in Cherleaton, for teechingt the Gramk and Intin targugee, and hall choowe one ucher
to the edid echool, who is empowered and required to inaist the manter horesaid in teaching the languages, reading, Englich, writiag, arithmetic or auch other parts of the mathematics as he is capable to teach.!

Summary.-This survey of the early sobools of the American colonies shows that, whether arithmetic was explicitly mentioned along with reading and writing in the official aots of the colonial governments, as in Now York, or was omitted, as in the cave of Massachusetts and Pennsylvania, arithmetic was taught in the publio school in many towns, probably from the beginning. The activities of trade and commerce, which were centered in these towne, created a demand for arithmetio, and instruction was given in the subject either in the public sohools or in private institutions. In these achools arithmetic was primarily a tool of commerce.

In Massachusetts the law of 1647 specified two types of public schools. For towns of 50 householders or more it was ordered that they "appoint one within their town to teach all such children as shall report to him to write and read." For towns of 100 or more families it was ordered that they establish a grammar school, a sohool of secondary rank, "the master thereof being able to instruct youth so far as they may be fittod for the university." Since arithmetic was not required for college entrance before the middle of the eighteenth century, it was not officially given a place in either type of school. But it was frequently mentioned in teaohers' contracts coordinately with reading and writing. Occasionally arithmetic was taught by the master of the grammar school; or an assistant, called an usher, was appointed whose duties'included the giving of instruction in writing and arithmetio. In ganeral, when arithmetio was taught in the public schools it was in the elementary rather than the grammar school.

In addition to these types of public schools, there were two types of private schools. One of these was for very young pupils and was known as a dame school. In the dame school the simplest rudiments of arithmetic, such as the addition and multiplication tables, were sometimes taught. The other type of private school, frequently called a writing achool, was for the distinct purpose of giving instruction in writing and arithmetic. In case arithmetio was not taught in the grammar achool in which a pupil was enrolled, he often attended a writing school half of the day or of evenings. By eatablishing public writing schools Boston created a "double-headed" school system which persisted well into the nineteenth century. But this practios was not general.

Arithmetio as a soience of numbers was taught in some of the colleges, particularly toward the close of this period. After 17,50 it had a place in the course of study of many of the academies.

1 Elde W. Clews: Op. oft., p. 457.

The growth of arithmetic as a schod subject. - In 1789 the teaching of reading, writing, and arithmetic was made obligatory in both Massachusetis and New Hampshire. It is not unreasonable to suppose that these laws simply represent the legalizing of a practice which was already prevalent. Whether this is the case or not, the enactment of these laws shows that arithmetic was then considered necessary to an alementary education and was given a plage coordinate with reating and writing. The following recuds of attendance in the Beston schools indieate the increasing popularity of the writing sehool, the special sebool for giving instruction in arithmetic and writing:

North Writing School.	$\begin{gathered} 17 \times 9 . \\ 280 \end{gathered}$	$\begin{gathered} 1: 88 . \\ 220 \end{gathered}$
North Gramimar School	(i)	36
South (immmar Schoul.	120	115
South Writing School	62	240
Writing School in Quten Street ${ }^{\text {' }}$		230

In 1745 Yale required arithmetic for entrance. In 1760 Princeton required the randidates "to understand the principal mules of vulgar arithmetic." In 1807 Harvard required-
Candidatea for admiwion into Harvand College shall he examined by the Preadent, Profisworand Tutom. No mie ahall beadmitiod, unlews he be thorouphly acquainted with the Cimmmar of the Groek and Latin languagea, in the various parts thureof, including Prowody, * * can properly construe and parwe Greek and Iatin suthore, * * be well inntructeal in the following rulew of arithmetic, namely, Notation, simple and compomend Addition, Subtraction, Multiplication, and Division, together with Reduction and the single Rule of Three, * * have well otudied a Compendium of Geography, * can tranalate Eoglich into Iatin correctly, * * and have a grond moral character, certified in writiog by the Preceptor of the Cendidate, or oume oher suitable pereon. ${ }^{2}$
By 1814, the reference to arithmetic was changed to "and be woll instructed in Arithmetic through the Single Rule of Three," and in and ufter the year 1816, "the whole of Arithmetic."
This recognition of arithmetic in the college entrance requirements necessitated the teaching of arithmetic in the grammar schools.
The establishment of a new type of school, the academy, which included arithmetic in its curriculum from the first, and the subsequent rapid rise of the acadtemy evidences the growing appreciation of arithmetic and other forms of elementary mathematics. In the first academy, established at Philadelphia as the result of the labors of Benjamin Franklin, there were three departments or schools, the Latin, the English, and the, mathematical.
The production of arithmetic texts by American authors and the numerous editions of texts by English authors which were published in this country in the latter part of this period also indicate the

1D. C. Colewrorthy: John Tileston's Bohool, p. 15.
E. E. Brown: The Makmy of Our Middle Sohools, p. 249.
$81758^{\circ}-17-2$
increasing interest in the subject. American árithmetics masy be said to date from 1788, the year in which Nicolas Pike published A New and Complete System of Arithmetic composed for the use of the citizens of the United States. The publishing of Pike's book seems to have been the signal for the appearance of texts by American authirs. By 1800, at least 20 arithmetica' by Imerican authors had bern published, besides several of not purely arithmetical nature, such ns, Instructor, 1794; The Traders Best Companion, 1795; and an Americin adoptation of John Oough's Treatise of Arithmetic, 1788.

In the 21 years which elapsed between 1800 and the close of this period, arithnetics by American authòrs appeared with incrensing frequency. The Scholar's Arithmetic, hy Daniel Adams (firnt fulh. lished in 1801) had passed through mine editions by 1815. Dablutl's Schoolmaster's Assistant (first published in 1799) was even more copular. Other American texts had an extended circulation. Numerous editions of Dilworth's Schoolmaster's Assistant (first published in England in 1743) were reprinted in this country. A revision of this popular text, by Daniel Hawley, was published in 1.513.

In his American Journal of Education, Henry Barnard gives reminiseences by a number of persons who attended school in the lnst quarter of the eightenth century.' One writing from rurnd Connecticut says that "arithnetic was hardly taught in day sehowl but adds that it was tanght in avening schools. Only twioshy that arithmetic was not taught but they wore propared for collogo. in acadomies about 1780 prosumably nover attended an. elemontary school. Ten who attended sehool in riral districts, including the States of Massachusetts, Comnecticut, Pemsylvanin, New Jorsey, and North Carolina, say that arithmntic was taught. Moet of thom mention it coordinately with reading and writing. Three make no mention of arithmetic, and four studied arithmotic in cities.

The appearance of arithmotic in the college entranee requirements, the activity of American euthors in writing texte, and the direet tes-

[^2]timony of these persons show that, by 1800, arithmetio was generally tanght in the schools, even in the country districts.
The increasing recognition of arithmotic as an esential school subjoct is but one olomont of a largor change which culminated in the nimatonth century in the completo secularization of public schools in this country. Tho control of aduration passed from the church to this stata, and instoad of oducation primarily for toaching the catarhism and church doctrines the purpese of nducation camo to bo a preparation or childron for tho secular activities of life. In the period from the close of the Ravolution to 1821 arithmotic grew rapidly in importance as a school subject, and in later chaptors it will be shown that it was given a place of prime importance in the secularized concept of oducation

The aim of instruction in arifimetic.-The aim of arithmotical instruction in this period was not well defined. In a general way the practical neods of trade and commerce were to be satisfiod, and this whes the principal aim. The authors of the texts used clearly thought of arithmotic primarily as a commercial subject. James Hodder says in the preface to his arithmotic, or, That Necessary Art Made Easy (finst published 1661 and widely used in the colonies): "And now for the bettar complesting of youth, as to cleriothip and trades, I am induc'd to publish this small troatise of Arithmetio." The titlo of Gruonwood's book, Arithmetick Vulgar and Decimal: with the Application thereof, to a variety of Cases in Trade, and Commerce, indicates a similar recognition of the practical aim. Daboll says in the prefaco (i) Daboll's Schoolmaster's Assistant (first published 1799): "The design of this work is to furnish the schools of the United States with a mathodical and comprehensive systom of Practical Arithmetic." A cipliting book proparod in, Boston, in 1809, has the following titlo: Practical Arithmetic compasing all the Rules necessary for transacting Business.
Tho immodiate ond sought, which also represente the standard of instruction, was a knowledgo of tho rules and thair application. We shall show in another place that the pupil was expected to learn the rulo and then to apply it to a vory fow axamples or problems. No opportunity was given for drill upon the application of the rule, oven in the case of the fundamental operations. Skill and facility wore not expected nor attompted.

Dilworth's Schoolmaster's Assistant contains oniy 9 examplos for drill on addition, a like number on subtraction, and a somewhat greater number on multiplication and division. Pike's arithmetic, which is an elaborate text of 512 pages, ${ }^{1}$ contains only. 9 examples for drill on addition and 9 in subtraction. Subtraction is disposed of

[^3]
within a single page. Adans's Scholar's Arithmetic contains lif oxanplos for drill on addition and 9 on subtraction.

Reminiscences and rocords of tho sehools of this jariod indirata that the pupil actually solved oven a less number of drill examples than were givon in the texta. The compiler of this report has in his possession a copy of Adams's Scholar's Arithmutic in which hlank places are loft for the solution of the problams. Only is of the io prohlems in addition am solved and only 2 of that 9 in subtractun The axamination of other taxts and of ciphering beohs written in the period reveals about the same amount of drill work.
William B. Fowlo relates the following which is probably typical
No boy had a printed arithmetic, but every other day a sum or two wan art in farh manuocript, to be ciphered on the slate, whow tup, and if ripht, copicl bito the mann. meript. Two suman were all that werr allowed in wabtration, and thin manher wits probably as many an the gond man could ant for eacl: boy. This ciphoring ax+ujut two hours, or ratiset consumad tav, and the other hare was mployinl in writuse ..the page in a copy book. Once, when I had done uy two nums it subtraction, and met them in my book, and been idle an hour, I veutured to mo to the nam ker adew and mak
 to that of the alnabouse steward when the halfentarva! (liver Twiwn "urkiyl fur miore". He looked at bee, twitched ins matheript toward him, and wail, putturalds "lith,
 por did 1 ever make abother afterwanis.'

Furthormore, there was very litto attomat mado to dovolop ahtility to apply the rules except to problems explicity falling undre given rules. If a problem appearod which could not her roadily chaseified as coming under somo known rule, both pmpil und tathor wom usually at a loss to know how to procered. Ocravionally there wis a pupil who developed some raal ability to reason out problems and to control unfamiliar arithnotical situations. Howovor, this was tho oxception and happeneci not in rusponse to a conscions attampt un the part of the teachars, but rather in spite of the system.

1 The Tearlies's Institute, or Familiur llats to Yonma Tem-hera, fit

Chapter II.
 THE: SUBJECT MATTER OF ARITHMETIC BEFORE 1821.

With few exceptions the texts in use in the linted States before lsin) wers of English authorship. Copies of thesie texts were imported, and editions of the popular ones wore printed in this comntry. The "first purely arithmetica] work published in the [initet Stutes" was an edition of Hodder's arithmetic, printed in Boston in 1:19 hy J. Framklin! Falitions of the texts by Corker. Wingate. Bonnyenatle, Gough, and Dilworth were printed in this country. lus settements other than English, notably New York and PeninWrania, arithmetics written by their countrymen were used.

The Schoolmuster's Assistant, by Thomas Dilworth, originally publiwhed in 1743, was used rery extensively in this country, almosit exclusively prior to 1 som). Numerous whitions wore printed in this cambry, and after the adoption of a Federal money it whis reviseat (1) were the commercial needs. A revised edition was published by Daniol Hawley in 1sio? with the title of Federal Calculator. This revision had passed through five editions by 1817. Revised aditious of this revision, hy William Stoddard, were published in 1817. and in 183 ?
On page 14 there is printed a list of the American authors of arithmetics published by 1 som. Few of these texts were used extensively. Tho first arithmetic by an American author,. Arithmetick, Vuluar and Incimal: with the applications thereof, to a Variety of (asts in Trade and Commetce, by Isaac (irecnwood, 17:3, found no phatia in the schools and was soon forgoten. In fact all of the texts prior to the one by Nicolas Pike in 1788 were so little known that his text was considered by some to be the first by an American author. Pifa scems to havo held this opinion himself. Although not the first text, this book, which was entitled A New and Complete System of Arithmetic, marked the beginning of arithmetic adapted to the neads of the I'nited States. It comprised 512 pages, of which the first 408 are devoled to arithmetic and closely related topics and probiems. There follow 4 pages of "plain" geometry, 11 pages of "plain" trigonometry, 45 pages of mensuration of superficins and solids, 33 pages of "an introduction to algebra, designed for the use of "academies," and 10 pages of an introduction to conic sections. ${ }^{2}$

[^4]- Pike's arithmetic is an elaborate treatise and not a text for the use of young pupils. It represents the maximal content of arithmetio in this period. The book sold for $\$ 2.50$, which placed it out of the resch of many pupils. It was used primarily in academies and colleges and yet it had a considerable oirculation. A second edition was printed in 1797, a third in 1808, a fourth in 1822 , and a fifth in 1832 An abridged edition was published in 1793, and a second one, pre pared by Dudley Leavitt, appearad in $18: 6$.

Following 1788, taxts by American authors appeared with increas ing frequency. The American Tutor's Assistan, by 7.achariah desi, 1798; The Schoolmaster's Asaistant, by Nathan Daboll, 1799; A Nivo System of Mercantile Arithmetic, by Michael Walsh, 1800; Scholar'* Arithmetic, by Daniel Adams, 1801 ; and Scholar's Arithmetic, hy Jacob Willetts, 1817, were widely used.

Of these texts, Daboll's Schoolnaster's Assistant scems to have been most popular. An edition "improved and enlarged,' was published as lato as 1839 . Adams's Scholar's Arithmetic had pasieri through 9 editiong, and 40,000 copies had been sold when it whis revised in 1815. An edition was published in 1822. Jacol Willetts's Scholar's Arithmetic passed "through more than 50 editions in, a f'w years." A revised edition was published in 1849. "A third revised edition of 20,000 copies of Walsh's Mercantile Arithmetic was printexd in 1807. An edition was published as late as 1826 .

The content of the texts. -Since Dilworth's Schuolmaster's Assistant Was the first text in arithmetic to attain an extended cirmulation in this country, it will be used as a basis for an exposition of the content of the texts of this period. Reference will be made to featuris of other popular texts which were significent.

The theory of arithmetic. -Theoretioal arithmetic was recognized in the definitions of arithmetic which were given in these early texts. The space given to arithmetical theory varied. Dilworth's text is primarily e practical arithmetic and he gives very little in the way of demonstrating "the reason of practical operations," and he has nothing to say about "the nature and quality of numbers." Pike attempts to treat comprehensively both theoretical and practical arithmetic. The spirit of the mathematician who is interested in the theory of numbers and operations pervades the whols book. In footnotes he demonstrates the operations. Under the head of "Vut gar Fractions" he defines prime number, composite number, and perfect number, and gives 10 perfect numbers which he states are "all] which are, at present known." The other texts of the period show much leas emplaasis opon arithmetical theory. Often considerable space was given to a "demonstration" of the rules, but these demonstrations were usually explanations of the application of a rule to a-- partioular problem or axamplo.

Defiritions.-Thp definition of number, fraction, addition, ato, were uaually given in an abstrach form, with no reference to the concrete situations which required the arithmetical concept or operation. For example, addition was defined as "putting together two or more numbers or sums, to make them one total, or whole sum." In the cave of businews rules, an attempt was made to indicate the sort of situation which called for the particuler rule. But the practical situation itself was not deacribed except in the problems. There was usually no attempt to build up a logical symtem of definitions.
liotation and numeration.-Dilworth made this topic, which he styles, "Notation," the first in the text aftor sume praliminary definitions. Numeration consisted of rules for reading numbers, and thry are given for reading numbers up to 9 digits. Pike's rule uxtends to sextillion, 42 digits, and in a note to duoderillion, 78 digita. The periods are of 6 digits oarh. Daboll also used 6 digits to a period, and bo gives four such periods. "Notation of numbers by Latin louters" is mentiouod, but not given by Dilworth. Wingate gives Koman numerals and prefars ILII to IV, VIIII to IX, etc., and IIX is given with VIII for eight. Pike gives Ruman notation, but Daboll and many other authors omit it.

The fundamental operation for integers.- These operations were given in the seral order, addition, subtraction, multiplication, and division. Sometimes this order was interrupted whive the tables of denominate numbers after addition. This is the case in Dilworth's text. In addition he givea the rule for placing the numbers tw be added and recommends proving by adding in reverse order. He does not mention "carrying" and solves out no examples. Nine abstrant examples are followed by 15 pages of "compound" addition. The rule for subtraction is given, but otherwise the prosentation is similar to that of addition. In multiplication, the tablea are given from 3 to 12 inclusive, except the tons. The process of multiplication is given in five cases: First, when the multiplier is 12 or less; second, when the multiplier "consiste of more figures than one"; third, when the factors "have cyphars at the enda"; fourth, when tho multiplier has cyphers "botween the significant figures"; fifth, when the multiplier may be resolved into two factors, each being less than 10. Short division is disposed of with no rule and only 12 examples. Long division is taken up in three cases, with a rule for each: First, any divisor; sacond, when there are cyphers at the end oi the divieor; third,- when the divisor "is such a numbar" that it is the product of "any two figures." In no case is an example worked out as a model or the rule explained. Besides each operation being applied to "compound numbers," there is also a list of practical problems for each rule.

In other texts tho fundamental operationa are presented in a more simplified form. Cocker, in general, explains a process belom he applies it to a particular example. Hodder carefully explains an oxample, even in addition, before he states the rule. Pike and Dalnil! give addition and subtraction tables. Most authore giya the inille of Pythagoras.' Pike "demonstrates" the rule for multiplication and division. Cocker and Hodder attempt to add to the understanding of multiplication and division by talling of the situntions wheh require the opmations. Hodder preaks of multiplication as berng equal to many additions. Daboll abys "division is a concise way of performing meveral subtrartions." The forms of the operations are ewsentially the same as our present forms with one or two exceptions in the older Faglish texte.

In addition to the fire canes of multiplication given by Dilworth. Pike noognises the seven following cases: Fint, to multiply by 10 . 100, 1,000 , ete.; second, "to multiply by 99, m9, ete., in ono lim". third, "to multiply by $13,14,15$, ete., t1 19, inclusirely, at one multiplication"; fourth, "to multiply by $111,112,113$, to 119, so as to have the product in one line;" fifth, "to multiply by 101, 102, 103. ete., to 100, so as to have the prenturt in one lime:" nixth, "to multiply by $21,31,41$, ets. 1091 , in one line;" soventh, "ta multoply by $22,23,24$, etc. to 29 , , en as to have the product in one line." In adiliLion to these 12 cane a general rule in given for multiplying."an" number, viz, whole or decimal. by noy number, hiving only the product." Detailed spexific rules are given for each case; for some cased two such rule ane given. But there is a marked fendency in the texts after Pike's in the direction of fewer comite. Daboll recognizes only five casts and Adams gives bexidee the general rule only a section to "contractions and varieties in multiplication."

A knowledge of the addition and subtraction facts seams to hatr bean taken for granted. Some of tho texta do mot giva an addition or subtraction table. The multiplication and division tables are uaually given and were to be memorized. Adams says under mulaplication, "Before any progress can be made in this rule, tho following table must be committed perfectly to memory." There are no exareises to be solved orally, and there is no provision fo: drill upon the number facts contained in the tables..

Commen, or enilgar fractions.-Dilworth devotes Part. II of his text to rulgar fractions (see Appendix). Following the definition of a freotion as "any two numbers placed thus, i ", and the definition of terms and the "sorte of vulgar fractions," redaction of fractions is given in 12 cases. They are: (1) Reduction to common denominator; (2) reduction to lowest terms; (3) and (4) reduction of "mixt" number, to impropar fraction and reverse; (5) reduction of compound fraction to a single fraction; (8) to reduce a fraction of one
deuomination to a fraction of another, but greater: (7) (1) reduce a frantion of one denomination to a fraction of another hut less: (S) to "moluce vulgar fractions from noie denomination to another of the rame value. having the numerator of the required fraction given'": (9) the ameme except the denominator of the requirid fraction is given; (10) to reduce "a mixed fraction to a single ome": (11) 10 "find the proper quantity of a fraction in the known parts of an integrer": (12) "In raduce any given quantity to the fraction of any greater denominatoon of the same kind." The operations of addition, suberaction. multiplication, and division fur fractions are then dispowed of within three scant pages. Two page devoted to the singher rule of three direct, singla rule of thren invenie, and double ruld of three for vulgar fratione romplete Part 11. Fur anch of the fourepperations a specitio:
 given numarators for a new numerator, and all the denominators fire a new demominatior."
For roducing a fraction to its lowest erms, Didworth gives only the Enelitean procese. In genaral the wher authons give the rule. "Divide the terma of the given fraction hy any number which will divide them withent remainder, and the guetmints, Again, in the same manmer: and wo on till if appense that there is mir mumber grenter than I which will dave them." Pike and Babell give huth motheds. Biwarth's rule for reduring fractions to a common denominator is: "1. Multiply each numerator into all the demominaters but its own for a now numeratior. 2. Multiply all the denominators for a now denominator:" The lesst common denominator is mot mentioned. although it would be very useful in the caumples he gives. Pike and Dalwilg give in addition the method for reducing to a leave common denominator.

Dilworth does nut solve an example or illuatrate a rule. Cocker and Hodder and the later authore, in general, solve wut one examphe under a rule and usually carcfully exphain the operation. Wingate, sugherts cancellation aw a short method in multiplication of fractions. Daloull also does this. Pi. a gives three eases under mumiplication.
The contrant in the pesition and space given to common fractions is interesting. Hodder and Pike place them immediately following denominate numbers and reduction: Dalaill gives theer casies of redurtion of fractions immediatels following denominate numbers. but the real tratment of the tepice comes nearly 100 pages later in the text. Adams finishes with fractions with a scant page devoted to explaining the meaning of a vulgar fraction and clozes by saying: "The arithmetic of, vulgar fractions is tedions and cien intricate to beginners. We shall not therefore enter inte any further considerawion of them here."
Dilworth and Daboll make no attempt to explain the meaning of a fraction. They just tell what the symbol is and how it is to be
operated upon. Adams gives two illustrations to explain the meaning of a fraction. The examples are atstract, the nearest approach to a practical problem being in such as: "Add f of a yard, f of a foot, and $\%$ of a mile together." Factoring, highest common divisor, and least common multiple are not mentioned by Dilworth. Pike gives them as the first topics under the head of fractions.
Vulgar fractions were even omitted in a few texts. Chauncey Lee in The American Accountant, 1797, explains his reason for omitting them as follows:
As the useof vulgar fractions may be advantageously superseded by that of derjmals, they are riewed aw au unneceseary branch of common echool education and therefore omitted in this compendium.

- Decimal fractions.-Part III of Dilworth's Schoolmaster's Assistant, which bears the title, "Of Decimal Fractions," includes much subject matter which is not commonly included under this head. Besides notation, reduction, addition, subtraction, multiplication, and division for decimals, the section contains evolution, the rule of three, interest, discount, equation of payments, and a number of other applications of percentage. (See Appendix.) The four operations are presented very briefly and entirely abstractly. Reduction includes such examples as, "Reduce 76 yardo to a decimal of a mile," and the reverip xxercise.

The place occupied by decimal fractions in this text is significant of the ssteam in which they were held. As compared with common fractions, the rule of three, interest, partnership, and other topics, decimal fractions were new. The elementary arithmetical processes, with the exception of decimal fractions and logarithms, were matured by the close of the sixteenth centiry. Simon Stevin gave the first systematic treatment of decimal fractions in 1585, and their application to practical arithmetic was a contribution of the seventeenth century. Coming thus after methoids for the calculations of business had been worked out, which were moderately satisfactory, decimal fractions and the methods of calculation which they make possible were incorporated in the texts only very slowly. Hodder, 1661, does not mention them in his table of contents, but approaches them in a chapter on profit and lors. Dilworth, as we have seen, treats all of the more common problems of business before he mentions decimal fractions. This shows that a need for thern was not keenly felt.
The establishment of a Federal money, 1786, increased the usefulness of decimal fractions and marked the beginning of their increased importance as a topic of arithmetic in the United States. Pike, who gives a brief account of Federal money immediately after decimal fractions, places them early in his text. Daboll places Federal money immediately after addition of integers, but the position and - treatment of decimal fractions is esentially the same as in Pike's

text. Adams follows the order of Pike, but gives a lees elaborate treatment.
Denominate numbers.-Weights and measures were not standardized, and we find a lack of uniformity in the tables of denominate numbers. Dilworth gives the tables of English money, Troy weight, avoirdupois weight, apothecaries' weight, time, and motion (circular mensure), in essentially the form we know them to-day. Other arstams of measures are given in a form which is only partially like that in our arithmetics to-day, and there are some which have disappeared from our texts. Because of their value in showing a phase of the development of arithmetic, we give the last two classes of tables below:

Ligitib Meast:re Wing Mragtre.
2 Pints, or pts., make............................... I Quart, qt.
4 Qıarta... IGallon, gal.

18 Gallons. .. I Runlet, K .
$31\}$ Gallons. I Barrel, Bar.

(1)................................... 1 Hogshead, hhd

Gallons.. . . . 1 Puncheon, Pu.
2 Hogsheads... 1 Pipe or Butt, P.

Winchegter Meagure.

Dry Meabure.

A supplementary table to avoirdupois weight is ulso of intrest:

- firkin eltutter
A firkin of dutter :ic
A batel of pat 64
A barrel of pot arh is (1)
-- anchovies is1
-... - - candlea is $1: 0$
 *oap is. 2:
butter is. $2 \cdot 4$
guhpowder is 113
--: raisinaia. $11:$
A double barral of anchovies. (in)
A puncheon of prunes is 10 ewt. or $1: 5$
A fother oi lead is $1: 0$
A stone of imon or shot in $14.6 \mathrm{wt} \because$ gr
--..-- butchers is. s
A gallon of train oil is. it
A faggot of ateel is. $1: 10$
A hurden of gad ate f or 9 mobre. 1sis
A quintal of fish in Newfomellanet $1:$ (1 ($)$
A stone of gians is. §
A stam of glass in 24 stone.
- - - of cheere or butheris. 10
A clove or half stonc is 8
A wey in Suffolk is 32 rloves, or $2: 6$
of woril 1 A .$3: 16$
A clove isIt
A atone is 14
A tox is. 28
A wey is 6 toxd and I atone, or 182
A sack in 2 weya, or. 304
A last.is 12 sacks, or. 4,368

In addition, in the section on exchange, the tables for the money of a number of foreign countries and even cities are given: Spain, Italy, Venice in Italy, France, Portugul, Florence in Italy, Frankfort in Germany, Antwerp, Brassels, Amsterdam, Rotterdam, Hamburg in Germany, British Dominions in America, the West Indies, Ireland, Denmark, and Staçkholm in Sweden.

Pike adde to cloth measure:
6 quarters of a yard make 1 ell-French
4 quartens, 1 inch and one fifth, make 1 all--Scotch.
3 quartars and two-thirds make 1 Spanish var.

ERC
4*

In long measure, he omits the denomination of hand and adds the surveyors measure. Square measure is increased by tho denominations of square inch, square foot, and square mile, and ale or beer mensure by the drnominations puncheon and butt. The table of dry measure is as follows:

solid (cubie) mensure, which Dilworth does not give, is given thus by Pik:

The table of Cedernl money which was established in 1786 is given by Pike under a seetion heading, "Decimal tables of coin, weight, and measure." The decimal tables of weight and measure was an attempt to decimalizo the taldes in common use, though the advantage of the form which he gives is not ovident.

In Daboll's text the great majority of the problems are stated in terms of the money of the ['nitad States. .This is true also in Adams's Scholar's Arithmetic. But Federal money did not bee,me generally used until considerably later than 1800 . In 181.; Adams deplores the use of English money and "to shew the great adrantage which is gainod by reckoning in Federal money" he contrasts "the two modes of account, and in separate columns on the same page," places the samo questions "in Old Lawful and in Federal Money."
The simplicity of the decimal system, upon which the Federal money was based, was vary soon ovident and stood out in contrast to the haphazard basis of the other systems of measure. Chauncey Lee, in 1795, commenting upon "our tables of weight and measure" points oat that they "are as illy contrived for ease of calculation as can weil be imagined." And later he says:
I am parsuaded that experience will soon evince the expediency, if not the aboolute necesity of Federalizing all the tables of weights and mearure and other mixed quantitiee, which have an immediate relation to commerce, upon a decimal acale.

After showing the inconsenience of vulgar fractions for the purposes of calculation, he says:
This inconvenience will ever continue to operate in a greater or les degree until this vulgar evil is plucked up by the rooto-all these surd, untwward fractional numbers banished from practice, and the several denominations in all commercial tablea of mixed quantities conformed to our Federal money and eatablished upon a dernmal ecale. To accomplinh this is a task too great for any individual in a republican gon ernment. It requires the arm of Congrew to effect it.

He follows this with Fede. Llized tables for avoirdupois weyght, troy weight, liquid measure, dry measure, cloth measure, apothecaries' woight, and board measure. His plan involves keeping at least one unit in each table the same except in the case of troy weight. The following table illustrates the plan:

Federal. Avolhilepoin

The plan was not adopted, and there is in trace of it in the arithmetices of Daboll and Adans, which appenard a few yenrs later.
The American Accomptant is interesting historically also beatse it is tho first arithmetic in which the dollar mark (\$) appears. Tha mark is in the form \nsubseteq. Thero is also a mark for dimes ($>$), a mark for cents (//), and a mark for mills (/). But these are scarcely usid in the text.' Daboll gives our present dollar mark, but uses also the abbreviation "dols." He writes both 127 dols., 19 cents, and $\$ 381$, 72 cents.

Daboll considers "Federal coin" so "nearly allied to whole nimbers, and so absolutely necessary to be understood by everyone" that be introduces it immediately following whole numbers. Adans places it after decimal fractions and 45 pages after table of English money.

The four fundamental operations were usually repeated for demminate numbers under the bead of "Compound Addition," "Compound Subtraction," 'tc. Dilworth divides his treatment of each of the operations into two parts, "simple" and "compound." Pike and Daboll give the operations for "compound" numbers aftui all operations have been given for "simple" numbers. There are no special rules in Dilworth's text for the operations with "compound" numbers, but other authors usually give specific rules. Pike recognizes as many as eight cases of "Compound Multiplication." Reduction, ascending and descending, was an important topic in the texts.

I Por a discusalim of the orfgin of the dollar mark, yee F: Cajori: The Erolution of the Dollar Mark, l'opuJar Belesce Monthy, vol. 81, p. 521.

It occupies 10 pages in Dilworth's text, which marks it as one of the most important topics-addition, practice, and exchange being the only ones which are given more space.
Rule of three.- There aro three cases of the rule of three which Pike defines as follows:
The Single Rule of Three Direct teacheth, by having three mumbers given, to find a forith, that ahall have the same proportion to the third, we the enoond hath to the first
The Single Rule of Three Inverse teacheth, by having thres numbers given, to find a fourth, which ahall have the same proportion th the becoud. as the firat bas to the third
The Double Rule of Three teacheth to molve such questions as remuire two. or more. statings by simpie proportion: and that, whether diret or inverse. It is compowal (commonly) of 5 numbers to find a serth, which if the proportion be direct, must bear auch proportion to the fourth and fift. as the thirid, beans to the firat and mannd: but if inverae, the rixth number muat bear auch propertion wh the fourth und fift as the firkt bears to the becond and third

For centuries this rule was the basis of the rules for solving most of the problems arising in businies. Its application was made so universal that it whs often spoken of as "The Golden Rule" of arithmetie. We shall describe the three forms of che rule and then illustrate the variety of practical situations to which it was appliod in the arithmeties of this period
The rule given for the case of direct proportion was to pick out "the number that asks the question" for the third term, take the one of the "same name or quality" for the first term, and the remaining one which has the same name or quality as the required answer is the second term. The solution is then accomplishad by multiply-ing the second and third terms together and dividing by the first, the quotient being the answer.

The problems under this rule were of the type: "If 6 lbs . of st:gar "Git 9 s ., what will 30 lh . cost at the saine rate?" "This type of problom was often complicated, as when the first and third terms were not of the same denomination, or when a term was expressed in more than one denomination. Pike recognizes seven cases of these complications for which he gives special directions.

Problems requiring the rule of three inverse are to be distinguished from those belonging to the direct case-
by an attentive consideration of the sense and tenor of the question proposed: for if thereby it appears that when the third term of the atating is loes than the first, the answer must be less than the second, or when the third is greater than the first, the anaver must be greater thau the second, then the proportion is direct; but, if the third be lees than the first, and yet the sense of the question requires the fourth to be greater than the second, or if the third being greater than the first, the answer must be lexe than the second, the proportion is inverse.

The required answer is then obtained by multiplying the first and second terms together and dividing the product by the third. Such problems as the following are placed under this rule:
"What length of board $7 \frac{1}{2}$ inchee wide will make a square foot?" "How"mung yards of carpet, 21 feot wide, will cover a floor which is. 18 foet long and 16 foet wide?"
Under the double rule of three we find such problent; as:
If $£ 100$ gain C 6 in a year. wha. rill $£ 400$ gain in 9 montha? If 6 men build a wall 20 fect long. 6 feet high, and 4 feet thick in 16 days, in what, tig̣, will 34 men tuild one 200 feet long, 3 feec high, and 6 feet thick?

These are to be solved by two or more successive applications of the single rule of three or by a special rute which is given.
Such' problems as, "If 40 lh . at Now York make, 48 Ili, at Antwerp. and 30 lb . at Antwerp make 36 lh . at Laghorn. how many lh. at New York are equal to 144 lh . at Leghorn 9 " wern placed under the separate head of "Conjoined Proportion." ' There wern two chases depending upon whether the question demanded how many of the first mensure were equivalent to a given number of the last, as in the problem ahovo, or how many of the last measure were equivalent io a given number of the finst. For each case a rule was given.

Practice.-Fourteen pages of Dilworth's text is devoted to "Practice," and judged from this point of view this, is the most important topic. It is defined by like as a-
contraction of the Rule of Three birect. When the first term happens to be a unit of one; and has its name from its daily use among merchants and tradesmen. being an easy and concise method of working nost questions which occur in trade and businese
As a preliminary, a tahlo of aliquot, or even, parts of money is to be learned. Pike adds a table of aliquot parts of weight and a table. of discount. Practice itself is divided by Dilworth into 10 cases, by Pike into 28, and by Daboll into 6, who explains that "reckoning in Federal money will render this rulo almost useless."
The cases given by Pike are:
When the price of 1 yd .1 l ., etr., is an even part of one rhilling
When the price is pence, and no even part of a shilling.
When the price is pence or farthinge, and an even part of a pound.
When the price is between one and two shillings.
When the price is any even number of shillings under 40.
When the price wants an even part of 2 a .
When the price is between 28 . and 3 s .
When there are pence in the price which are an oven part of a shilling, beeidea an even number of ehilinge under 20.
When the price is any odd number of shillinge under 40.
When the price is an even part of a pound.
When the price wants sin even part of a pouind.
When the price is ahillings, pence, and farthings and not an even part ofen.pound."
When the price of a yard, lb., etc., is pounds, ahillings, and peace.
${ }^{1}$ This method of solving such problems was formetrly known se the "Chain Rule." (Bee Jackeor: The Iducational Blemificance of Blxteenth Contur; Arthmetlc, pp. 148-19.)

Nic. ${ }^{\text {an }}$ ä

When the quantity is any number leas than 1,000 , and the price not more than 12 d . per yard, etc.

When the price is such a number of shillings and pence, sa, when redured into prace, may be produced by any tro numbers in the multiplication i ble, and when the quantity does not exceed 1,000
When the quantity is 240 .
When the quantity is not lees than 228 , nor more than 252 .
When the quantity is 480 .
When the quantity is 160 .
When the quantity is 120.
When the quantity is 80 yards, etc.
When the quantity is 60 yarde, etc.
When the quantity is 180 .
When the price of one hundredweight is of several denominations, and the quantity likewise.
When the price is at any of the rates in the second Practice.Table of aliquot parta. When the price is any even number of ahillings. if it be required to know what quantity of any thing may be bought for 80 much money

- To thd the dir ount of any invoice, of bill of parcels, at any rate per cent. To find the value of goods sold by particular quantitien.

Although the authors insist that "Practice" is "a contraction of the Rule of Three," there is no trace of the rule of three in many of the specific rules which are given for the numerous cases. For example, the rule for case 5 mentioned above is: "Multiply the given quantity by half the price, and double the first figure of the product for shillings; the rest of the product will be pounds." There is no effort to give a reason for the rules. The pupil is exnacted to accept them on faith.

Barter.--Barter was a topic whirh included such problems as, "How much rice at 28 s. per cwt. must be bartered for $3 \frac{1}{3} \mathrm{cwt}$. of raisins at 5d. per lb. $F^{\prime \prime}$ Such a problem was solved by the rule of three.
Fellowship.-The topic of fellowship, later called partnership, was treated in the texts of this period as an application of the rule of three. The rule for single fellowship, i. e., fellowship with equal time, is, "as the whole stock is to the whole gain or loss, so is each man's particular stock to his particular share of the gain or loss." Problems in double fellowship, or fellowship with time, are to be solved by a similar rule.

Alligation.- Such problems as the following are given under the head of alligation medial: "Al farmer mingled 19 bushels of wheat at tis. per bushel, and 40 bushels of rye at 4 s . per bushel, and 12 bushels of barley at 3s. per bushel, together; I demand what a bushel of this mixture is worth $7^{\prime \prime}$ The rule is:

As the whole composition is to its total value, so is any part of the composition to jts mean price.

Alligation alternate is defined" as "when the rates of several things are given to find such quantities of them as are necessary to make a
mixture which may bear a certain rate." There are three casps which are illustrated by the i.llowing prollems:
A grocpr would mix three norts of eugar together, viz, one art at lid. per lh.. atwother at 7d, and another at Ed ; how much of earh mort must he take that the whole ruixture may be oold for gil per ibs?
A man being decermined to mix 10 buntale of wheat at ane per buchel with ryen at 3a., with barley at 2s., and with oaten at is. per hushei. I demand huw much rye, harlen. and oats muat be mixed with the 10 burhele of wheat that the whole may be wifl ior 2sd. per bushel?

 bow much of mort he must take?

The rule for solving such a problem as the first is given by Pike as:

1. Place the weveral pricen of the simplim |samplent. heing roduced to ane dermmination, in a column under each other. the leant uppermast, and mograduail? downwart. as they increare, with a line of connertion at the levt hand. and the mean price at the left hand of all.
2. Connect, with a continued line, the prive of ach simple. or ingrediont, whith is leas than that of the compound, with one or any number of those. Which are greatirg than the compound, add each grester rate or price with one. or any mumber. of fla leen.
3. Ftace the difference, bretween the mean priee for mixtum-ral(.) and that af is. h of the simples, opposite to the rates with wheh they are commerterl.
4. Then, if obly one difference stand akainet any rate, it will be the quathty belonging to that rate, hut if there be meval. their sum wit: he the guantity

To solve problems such as the second and third above, the rule of three is applied in addition to the above rule. It is wo be noted that such problems are in general indeterminate. The answer obtanned in any case depends upon the manner in which the secomd step of the solution is performed. Also, as we have noted before, no attempt is made to give any reason why such a procedure should give the required result.

Position.--Position is the tifle of the tupic which contains such problems as:

Two men, A and B, having found a bag of money, diapisted who ahould havic it; A said the half, third, and fourth of the money mado $1: 30 \mathrm{I}$ aud if B could bll how much was in it, ne should have it all, otherwier he whould have nothing: I demared how much was in the bag?

A, B, and C would divide 100 I, between them, so that B may have ; I. more Han A, and $C 4 \mathrm{~L}$ more than B; I demand how muth earb man must have.

Such problems as the first are solved by supposing a number and ithen applying the rule of three. In problems such as the second one above, two numbers are to be supposed and the orrors manipulated according to a mechanical rule to determine the corrections which must be made in the supposed numbers.

Exchange.-Under the head of denomi-ate numbers the lack of common standards of weights and measures was noted. This was
particularly true of the medium of exchange. Each country, and sometimes even an important commercial city, had its-own medium of exchange. (See p. 24.) This situation gave rise to many probhims of exchange.

Dilwirth gives 11, cases under the head of "Exchange" which grow out of cammercial relations between Iondon and other centers. of business. The problem is to determine the cquivalent in English \#nthey of a sum expreseed in the money of a foreign place. or the rewerse. No explivit directions are given, but evidently the problems are to be solved by the rule of three, or a contraction of it, when angle maltiplication or division is posesible.
Whough the prewent derimal syatem of money in the Inited states was extablifled in 1786 , its univeran acceptance by the sevaral stas was delayed. Prior to 1 sist ach of tho several Statess hat estahlished its own currence. According to Pike they had adopted a common medium of exchange m gromps as follows: New $1 h_{\text {anpshire, Massachuset ts, Rhode Island, Comectiont, and Virgina; }}$ Xi.w York and North Carolima; Now Jersey, Pemisylvamia, Delaware, and Maryhad: South Carolina and Georgia. In addition. Canada and Nova sootia had another medinu of exchange. Each of these fire moners was a modification of the system of English money in promeds, shillinge, and pence.
"hese additional fartuns wore added to the already complex problem of werhange which we have described. Conder the head of "Rules fir rodicing Federal woin and the currencies of the several Thited States: aloo English, Irish, Camada, Nosa Scotia, Livres, Tournois. and Spanish milled Dollars, each to the par of all the other," like gives 76 rules of this type: "To reduce South Carolina and Gienrgia currency to Now Mampshire, Massachusetts, Rhode Istand, Comecticut, and Virginia currenes. Rule: Multiply the South Carolima, cte., sum hy 9 and divide the product by 7 ." This topic prewdes the rule of three, hut under this rule aditional problems of exchange are given. Later in the text a table of exchange is given for refarence.
Daboll gives a similar treatment of exchange, and Adams, in commenting on the improvements contained in the revised edition of his Scholar's Ardhmetic in 1815, sans in the prefare:

> But what more particularly claima attention in this revised edition is the introduction of the rule of exchange, where the pupil is made arcpuinted with the different currencies of the several States (that of South Carolina and Georgia only excepted), and how to change these currencies from one to another; also, to Federal money, and Federal money to these several currencies.
his shows that the needs of business, which are reflected in Pike's eatment of exchange, were felt keenly enough as late as 1815 to cause
a revision of a text which had previously omitted that part of exchange which had to do with the currencies of the epreral Statew. But, as will appear in the consideration of the texta of the next period, the need was soon removed by the general use of the Federal money.

Percenfage.-Problems of loss and gain, discount, interest, ate., which we now clase as applications of percentage, are treated in the texte of this period, but the topic of pereentage itself does not apperar. Cocker (1667) firat mentions per cent under profit and lows. After stating and solving three problems having to do with the absolute loss or gain ho gives the problem:
A draper hought $\$ 0$ kenexy for 129 I . I dmand hut he mast will them per pine to gain 15 L . in laying out 100 J . at that rate.

The answor is justified by suying:

 15 L. per C.
He continues his development with the two following problems-

In these problems and the accompanying explanations Cocker s. expressing the Jossior gain as heing at the rate of so many peounts an each 100 pounds invested. The treatment of loss and gain in the other texts of this period for qute as explicit, but it is in accord with the spirit of this. Percent is written "per cent.," which shows that "rent" was clearly understood as an abbreviation for centum. Occasionally "per com" was contracted to "per (.."

Pike introduces profit and loss by saying that is
is an axcellent rule by whids merchants and tradere diecover them profit and hang per cent or by the griwes * * It almainathicta them to raiew or fall the price of their gor dis 80 as to gain of livers su much per crnt. Ats.

This indientes the recognized function of the topir.
Pike gives this probtom under the head of the rule of three: " If 100 L . gain 6 L . in a year, what will 475 L . gain in that times" But this seems to hare been unusual. Dilworth defines "the rate per cent" as "a certain Sum agreed on between the Lender and the Borrower, to be paid for every 100 Pound, for the Use of the Principal. which, according to the Laws of England, ought not to be above 5 L . for the Use of 100 L . for 1 year, and 10 L . for the Use of. 100 L . for 2 years; and so on for any Sum of Mony, in Proportion to the time proposed." The rule is, "Multiply the principal by the rate per cent and divide the product by 100 , the quotient is the interest requirod." Pike, Daboll, and Adams give similar definitions and the
same rule. For days and months aliquot parts of a year were to be taken. For 6 pet cent a special rule was given.

Dilworth treats briefly compound interest ald robate or disomat (true discount) in Part 1. Later in l'art III these tophes, together whth other applications of percentage, aro taken up with decimals. Inder the head of "Simple Interest" "the ratio of the rato per cent" sedefined as "only the mimple interest of 1 I. for unc year at any propenend rate of intarest per cent.". It istobe found by the application of the rule of there thas:

$$
\begin{array}{cccc}
\mathcal{L} & \boldsymbol{\varepsilon} & 1 & \\
\operatorname{lom} & i & 1 & 10 \mathrm{cki}
\end{array}
$$

It the le of ratios and the forar casos of interest are given, the rale boing stated only in term of a formota. No prohtem is solved cut. but presmally decimal fractions are to be coployed in solving the probioms. Compound interest is presented in the same manner. Ambutios and ponsions in arrears, present wort? of ammitien, annuities and lensew, and rebate or discount are considered for both simple and compound interest. With only a very few exceptions all posshberases are given. Besides these the topies of purehasing frcehold wrond ewtates and purchasing freehold estates in recomion are trated in their several castes. In all eases the rule is stated in terms of a formula.

Pike adds commission, brokerage, partial payments, buying and selling storks, and policies of insurance as applications or phases of interest. 'These topics are treatial very simpiy with the exception of pollicies of insurance, which is given in cight cases. Four of these cascs have to do with problems arising in marine insurance.

Botl: Dilworth and Pike give equation of payments by the common way and by the true way. By the common way the equated lime of payment was found by multiplying "earh payment by the time at which it" was due and then dividing "the sum of the prodnets by the sum of the payments." The rule for the true way is compliented, but it is based on the recognition that to be absolutely fair interat upon the amounts whose payment is delayed should be equal to the (true) discount upon the amounts which are paid before they are due. Daboll and Adams do not mention equation of payments by the true way. Adams givers a Massachusetts rule for partial payments, and Daboll adds the Comnecticut rule.

In the treatment of these several topics which we now associate under the head of the applications of percentage, decimal fractions are used only as a second method. Six per cant always atood for at the rate of 6 L . on 100 L ., $\$ 6$ on $\$ 100,6$ cents on 100 cents, etc. To get from 6 per cent to .06 the rule of three was required, and then .06 was called the ratio. In the general organization of the texts after

Dilworth, decimal fractions were placed early enough wo that they might have been ueed dirertly in the solution of problems which inrolved "per cent," but in general they were not. The method if solution was accomplishoul by an application of the rule of thres, or diractions were given to divide the profluct by $l(x)$ or to cut off $t w$, places.

Percentage with its seviral enses is not comtained in the foxte. The range of application ia ar great as we have todas, hut there were handled without the terhaigue of promatnore.

Ture and trett had to do with robiew for making allowances in ther weight of merchandize. Tare was and allowance for the cometamer (box, barcol, bag. (ete.). Trett was an allowamer of 4 pounda out if each 104 pounds for "Waste and dust in" samer sort of grodas." Cloif

Progressions. arithmetical and geometrical (somatimes calld pror portion) are treqted exhmustively hy Pike and partially by Diburti, and Dakoll and not at all by Adams. In geometrical progressinns the problems are mostly concerning a crufty person who mahes an apparently forish hagain. It inwolves a geametricat progressinu. however, and turns out to be most profitable. The merchant who sold 30 yards of fine velvet trimmed whth goll at 2 pims for the firs yard, 6 pins for the recome, is pins for the thed, ete., is typucal.

Promutations was fropuently gisen as a topie. The prohbemas are about such quastions as the number of changes which can be rung on a clime of bells, or how many different positions a party can assume at a dinner table. Pike asks how many variminns can lie mate of the dphabet. In Pikere text the topic of combinations is added, and the whole topic daborated intorseren rases. However, the topic is usually very briefly trobted.

Eivolution.-Diluorth disposes of sepuare root by saying to prepare the given square for extraction "hy pointing off arery two figurs:." He gives no further instructions. . (cube root he explains in somu detail, employing the relation $(a+e)^{2}=a^{3}+3 a^{2} c+3 a r^{2}+c^{3}$, and rules are given for finding all roots up to and including the twelfth root. Pike gives an additional method for cube root and a general rule for "extracting the roots of all powers," hut does not explicity go beyond the fifth root. He gives also a general method by approximation. Adams considers only square and cubo ronts. For these he gives elaborate demonstrations which are illustrated by cuts.

Longitude and time.-This had not yet become a topic in the texts of this period. Pike approachos the topic in four problems under the rule of three and in two problems under duodecimals.

Mensuration. -The space given to mensuration varied. Dilwordh does not mention it. Pike makes it quite a feature. He introduces
pactically all of the rules of gometry. (See table of contents in Aphentix.) In the wher tuxts it is usually mentionorl. The mensurntional problemis are fron commereer rather than from the trades.
lhumecimals. Inrt V of Dilworth's text is devolad tu dimalerimals or crose multuplicatoon. In the preface he states that the topice wan but contained in the origmal text. But addal itt a revimion. Duode mbads ane defined ins "fractions of a foot. or of an inctr, or any part. "f an mol having 12 for their denominations." Fist, inchow, sevends, lurds, and fourthe are used. It was the purpere to use a scate of 12 III eatculatwis rather than the derimal scale upon which our number stiom is hasel. Other texts of the periend give the upic: and the syhem siems to have hern used in practical calculations. Adams speats of $1 t$ as a rule whach is "particularly useful to workmen and attiters in castar ip the contents of their work."
 smbilly fomm mixid in with practiend problems. In adition, some andhors give a hat of purgho under the above or a similar tithe. This is the cast in the texts hy Dilworth and Adans and in their lists wo rot man somo famitiar fremds from which we select the following:

 I ber wrentwiver.
 Fivery ack had mevell cala, Ficery athat wenk kits. Kitm, rats, renke and wiven. Hew many urmgruing w, st live?

Proofs-- Dilworth gi es what he calls a "proof" for many of the ruldes of his text. Bu. these "proofs" are rather checks upon the ofrations than a prof of the rule. A very common form of proof Hise to reverae the order, i. e., take the answer obtaned and work back to the combtions of tho prohlems. In the cese of addition and maltiphicution, it meant to change the order of performing the opration. "Casting out the nines" was used as a method of proving multiplication and addition, but Pike says, following his exposition of this method of proof:
However, the inconveniency attends this mothod, that, although tha work will asuyg prove right, when it is so; it will not always be right when it proves so; I have therefore giveri thia demonstration aiore for the sake of the curious, than for any real adrantage.

In the Sclolar's Arithmetic, by Daniel Adams, the subject wos begun as follows:

Arithmetic is the art or ecience which treata of numbers.
It is of two kinde, theoretical and practical.
The theory of arithmetic explains the nature and quality of numbers, and demonstrates the reaoon of practical operations. Considered in this mense, arithmetic is a science.
Practical arithmetic shows the method of working by numbers ac as to be most useful and expeditious for husiness. In this senee arithmetic in an art.

There are six pages of definitions of this sort, and an explanation of the system of notation, before any problems are given. Addition is begun with the definition, followed by the rule for addition and for proving the work. 'The first example is: "What will be the amount of 3612 dolls. 3043 dolls. 651 dolls. and of 3 dollars when added together ?" There is nearly a page of explanation. This is followed by nine abstract examples which complete the topic of addition except for a "Supplement to Addition," which was added in the revised edition.

In treating a topic four elements were recognized-definitions, rule, explanation and problems. If the topic permitted being subdivided into cases, this was done. The presentation of the single rule of three direct in Pike's text is perhaps typical.
The Rule of Three Direct teacheth, by having three numbers given, to find a rourth that ahall have the game proportion to the third as the second hath to the first.

If more require more, or lees require lees, the queation belongs to the Rule of Three Direct.

But if mure require lew, or lese require more, it belonge to the Rule of Three Inverse.
Rule. 1. State the question by making that number which asks the question the third term, or putting it in the third plare; that which is of the arme name or quality as the demand, the firtt term; and that which is of the amme name or quality with the answer required, the oecond term.
2. Multiply the eecond and third numbers tognther, divide the product by the first, and the quotient will be the answer to the question, which (as also the remainder) will be in the aame denomination you left the second tenn in, and which may be brought into any other denomination required.

Two or more statings are sometimee neceesary, which may alway be known from the nature of the question.
The method of prool is by inverting the question.
But, that I may make the method of working this excellent rule as intelligible as powsible to the learner, I shall divide it into the several cases following:

1. The fourth number is always found in the same name in which the second is given, or reduced to; which, if it be not the higheat denomination of its kind, reduce to the higheat, when it can be done.
2. When the second number in of divers denominations, bring'it to the lowest mentioned, and the fourth will be found in the same name to which the socond is reduced, which reduce beck to the higheot poasible.
3. If the first and third be of different names, or one or both of divers denoming. tions, reduce them both to the loweat denomination mentioned in oither.
4. When the product of thip second and third is divided by the first; if there be a. remainder affer the division, and the guotient be not the least denomination of its
hind; then muktiply the remainder by that number, which one of the rame denomination with the quotient contains of the next lees, and divide this product arain by the first number; and thus proceed 'till the least denomination be found, or till nothing remain.
5. If the first number be greater than the product of the second and third, then liring the second to a lower denomination.
6. When any number of barrels, bales, or other parkage or piecer are given, rach containing an equal quantity, let the content of one be reduced to the lowent name, and then multiply by the given number of packages or pieces,
7. If the given barrels, bales, pieces, etc., be of unequal contenta (as it mucet girnerally happens), put the eeparate content of each properly under one another, then add them together, and you will have the whole quantity.

The organization of the texts.-The plan of organization of the texts of this period was topical, and there was onsiderable agreemerit in the general arrangement of the topics. Numeration was uniformly the first topic. Sometimes notation was also included under this head, as in Pike's arithmetic, or it was given as a separate topic as in Adams's Scholar's Arithmetic. This was followed by the four fundamental operations for integers, and these in turn by denominate numbera, including reduction, compound addition, otc. Federal money oame to have a place early in the text. Fractions, both vulgar and decimal, came late in the first texts (see tables of contents in-Apprndix). In later texts (Pike, Daboll, and Adams) thay immediately - followed compound numbers. The rule of three in its variety of forms was placed after fractions, and in turn it was followed by practice, tare and trett, exchange, interest, brokerage, etc.

Adams has a rather uniquo general plan of organization. After disposing of numeration and notation he divides the remaining content into four sections as follows:

Section I. Fundamental Rules of Arithmetic.

Section II. Rulee ementially nerewary for overy perion to fit and qualify them for the transaction of businese.

Section III. Rules occasionally useful to men in particular employmenta of life Section IV. Forms of notes, de.
Specifying the rules of Section II, he says:
Thee are ten: Reduction, fractions, ${ }^{1}$ Federal money, oxchange, intereat, compound multiplication, compound division, single rule of three, double rule of fliree. and practice.
A thorough lnowledge of thee mule is sufficient for every ordinary occurrence in life.

A summary. -The most prominent feature of the arithmetic texts of this period was the large number of rules which were to be directly applied to problems of trade and commerce. The texts were essentially commercial arithmetics. The solutions of the exercises were to be written as opposed to oral and the subject was frequently called "cyphering" for this reason.
 the petidetoles or Yetern money.

Primary and mental arilkmetic.-The texts which we have described were not intended for young children. In fact, during this period arithmotic was seldom taught to children before the age of 8 to 10. The contont was limited to writton calculations and mental arithmetic did not exist. Betweon 1800 and 1821 there wore a few attempts to make arithmotic "easy" for childron." The genoral plan of these texts was the same as that of the ones we have described. Some of the topias wora omitted, and the treatment of the others was less elaborate. They possessed none of the essential features of the . primary texts of the next period. There was one atterapt at a montal arithmotic.' The toxt was montal only in the sense that rulns and facts were to bo momorized and short cuts omphasized so that the pupil could make the calculations mentally. There were no auslyses. It was not a mental arithmetic of the type which became prominent a fow yoars lator.

The appearance of these texts is signiificant in that it indicates a tendency which culminated in Colburn's First Lessons, which is deseribed in Chapters IV and V.

Texts not exclusively devoted to arithmetic. - In addition to texts of the type which we have described, there were a number of books whirh were encyclopedic in the range of topics treated. They ware usually published under such titles as, "Instructor," "Companion," "Assistant," etc. 'The following complete title of a book of this type gives a good idea of the range of topics. Out of a total of 384 pages, 94 are devoted to arithmetic, not including bookkeeping.
The Instructor; or, Americap Young Man's Beat Companion. Containing, B_{i} ing, Reading. Writing and Arithmetic, in an easier way than any yet publishea; and bow to yualify any person for busine*s, without the Lelp of a Master. Inatructions to write Variety of IIands, with Copies, both in Proee ayd Verse. How to write Letters on Businews or Friendahip. Forms of Deeds, Bonds, Bills of Sale, Powers of Attorney, Indel، clirea, Receipts, Wills, Learea, Releases, otc.

Also, Merchants' Accounta, and a ahort and easy Method of Shop and Bookkeeping; with a Description of the Product, Counties and Market Towns in England and Wales, otc.

Together with the Method of Measuring Carpenters', Joiners', Sawyers', Bricklayers', Plasterers', Plumbers', Masons', Glaziors', and Painters' Work. How to undertake each Work. With the Description of Gunter's I ine and Coggershall's Sliding-Rule.

Likewiwo, the Practical Gauger, Mado Easy; the art of Dialling; How to erect and fix Dials; with Inatructions for Dying, Colouring, and making Colours; and some General Observations for Gardening every Month in the year.
To which is added, The Fsunily's Beat Companion: With Instructions for marling on Linen; How to Pickle and Preeerve; to make divers Sorts of Wine; and many excellent Plasters, and Medicines, neceesary in all Families; and a Compendium of

[^5]the \leq :iences of Geography and Astronomy containing a brief Deecription of the different Parts of the Earth, and a Survey of the Celeatial Bodies.

Also Several Very Unoful T'ables.
By George Fisher, Accomplant, 30th Ed. Revised, Corrected. Enlarged, Improved. Printed at Worceeter, Maes., 1785, by I. Thomas.

The contribut 'un of the period.-The sixtoonth contury has been called the great constructive poriod in the development of arithmetic. A comparison of the texts used in the United States before 1821 with the description which L. L. Jackson gives in The Educational Significance of Sixteenth Century Arithmetic shows no important advance over the arithmetic of the sixteenth century except the introduction of decimal fractions. But only partial use was made of decimal fractions, even after the introduction of Federal money, until after the close of this period. "Rules reducing Federal coin, otc.," represent the only important addition to the contents of Dilworth's Schoolmaster's Assistant and earlier toxts by English authors.

The con tributions of the ciphering book period to the development of arithmotio as a school subject were (1) the arousing of interest in arithmetic suited to the noods of the United Stater, and (2) the cultivation of \mathfrak{A} sense of discrimination in the selection and organization of the subject matter of arithmetic. The first is shown by the number of texts by American authors which were published betweon 1788 and 1821. The second is shown in a general way by all the texts. In" particular it is shown by the contonts and form of organization of Adams's Scholar's Arithmetic and in Daboll's attitude toward fractions. These two contributions are significant not so much for what whe accomplished during this poriod as for the fruit thay bore in the next.

The content of the instruction.--When the arithmetic artually taught is considered, it must be noted that in the latter portion of this period something of arithnetic was taught in four types of schools; Dame schools, public schools, private-schools, and academits and colleges. These will be considered in order.

Dame schools.--Dame schools, as the name signifies, wero kept by women, usually maiden ladies, who were willing for a small competence to care for very young children, thereby relieving their mothers of that burden. This was the main function of the dame schools, but in addition the children were usually taught their letters and occasionally to read. Often no more was possible. hecause of the very limited ability of the one who gave the instruction. Occasionally the children were taught to count and to chant the addition and multiplication tables. With the exception of the most pretentious of these schools, the instruction in arithmetic did not extend beyond this.

Public schools.-The arithmetic studied by pupils in these schools seems to have been often confined to the four fundamental operations
with integers and to these operations for denominate numbers. The following is typical of a number of statements relative to the latter part of this period:

Arithmetic was taught from lilworth, a book making no allusion to a decimal currency, and having little or no aduptation to the ordinary requirementa of busineses. If we reached the "Rude of Three," we were quite gratified with our attainments. Moat of us came short of it. ${ }^{1}$

It should be noted that in Dilworth's Schoolmaster's Assistant the rule of threo began on page 129, immediately following reduction, which was preceded by only notation and the four operations for integers. Wickersham says:

Refore 1800 . he was considered a remarkable acholar who in a country school had ciphered beyond the rule of three. and few achoolmastern made pretension to a knowledge of arithmetic more extensive. ${ }^{2}$

Warrerr Burton in The District School as It Was tells us that:
My third season I ciphered to the very last sum in the rule of three. This was deemed quite an achievement for a lad only 14 years old, according to the ideas prev.iling at that period. Indeed. Whoever ciphered through the above-mentioned rule was supposed to have arithmetic enough for the common purposes of life. If one procoeded a few rulee beyond this, he was considered quite smart. But if he went clear through-misceltaneous questions and all-he was thought to have an extraordinary taste and genius for figures. Now and then, a youth, after having been through Adams. entered upon old Pike, the arithmetical eage who "ret the suma" for the preceding generation. Such were called great "arithmeticians." ${ }^{3}$

In New York City in 1815 we are told that, of the children studying arithmetic, 208 were in addition and subtraction, 110 in multiplication and division, 15 in compound numbers, and only 10 in reduction and the rule of three.

Private schools.-In general these were schools for giving instruction in special subjects, such as arithmetie and writing. Hence the instruction in arithmetic was more pretentious than that in the public schools. Advertisoments of schoolmasters of about the middle of the eighteenth century have been preserved and are indicative of the scope of the instruction in those schools. These are some of the less pretentious:
From the Newport Mercury of May 22, 1759: "John Sima, whoolmaster in the town. achoml, teacheth reading and writing, arithmetic, both vulgar and decimal, geometry, trigonometry, and navigation, with peveral other branches of Mathematics."

Another notice from the same paper, under date of December 19, 1758; states:
"Sarah Osborne, schoolmistress in Newport, proposes to keep a boarding school. Any person desireus of seading children may be accommodated and have them
' Barnard: Amer. Jour. of Educ., 16: 738
1 J. P. Wichoraham; Fistory of Eduoation In Pemesylvala, p. 192.

- Pp. 110-113.

4Barnard: Amer. Jour. of Ediac., 19: 500.

instructed in reading, writing, plain work, ambroidering, tentstitch, amplers, etc., on reasonable terms.?'
A few schoolmasters, however, were more pretentious in theip announcements.
In 1748 the paster of the Anne Arundel County School was John Wilmot, tho concisely and expeditioualy taught "raading, writing in the moot usual hande, gram. mar, arithmetic, vulgar, decimal, inkitrumental, adgebraical, merchant's acchunta, with the Italian motl.ad of brokkeeping, geometry, trigonometry, phain and aphuric, with their applications, furveying, natigation, atronomy, dialing, likewise the une of the globes, and sundry other parta of mathematice. "'s
Peter Robinoon, at Upper Marlboro, near which place youth may be boarderd. taught "reading, writing in all hands, arithmetic in whole numbers and fractims. vulgar and derimal, aloo artificial arithmetic, both lugarithanical and logistical, with instrumental either by inepertion, rabdologits or proportional arales, geometry, theth superficial and solid, with mensumations of all kinds, either in longimetria, plamomotris, or atoreometry, as murveying, furtitication, gumefy, gauging, etr; brifo nometry, both phain and spherical, with navigation either in plain, merizar, or circular sailing, alno dialing, all sorts and ways, eithar arithmetically, grometrically, pmjertive, reflective, concave, or convex codmography, celential or actronomical. and cerrestrial or geographical; astronomy, practical and theoretical ; grammar, mer. chant's accounts, or the art of bookkeqpiug after the Italian manner; algebra, Euclid's elemputs, etc.; likewive the dowription and uwe of sea charte, mape, quadrants, fore staiff, noctumal, protractor, acelew, ('oggershall's rule, metor, gauging rod, univerial ring dial, globee, and other mathematical inntrummita ${ }^{\prime}$: ${ }^{2}$

A ciphering book executed by Miss Catharine G. Willard while she was attending the Ladies Anademy, Boston, 1809, contains the following topics: Numeration, addition, subtraction, multiplication, division, compound numbers (pence table, lawful money, Federal moniry, Troy weight, avoirdupois weight, apothecarics weight, cloth measure, long measure, square measure, cubic measure, win? or berer measure, ale measure, time measure), addition, subtraction, inultiplication, and division of compound numbers, reduction by division, reduction by multiplication, single rule of three direct, single rule of three invines, double rule of three, single fellowship, double fellowship, simple interest, compound interest, exchange. practice (20 cases), bills of pareels, discourit, harter, tare and trett, losis and gain, equation of payments, commission, brokerage, buying and solling stocks, and policies of insurance.

Few ciphering books are accessible in libraries, but'such as it has been possible to examine indicate that the range of topies was grinerally less than in this one, although one was examined which included even a greater number of topics.

Academies and colleges.-In the academies and oolleges such a text as Pike's was used, and something of the science of arithmetic as well as the art of ciphering was attempted. The students were more mature and they were able to advance beyond the pupils receiving instruction in the public schools or even in most of the private schools. In 1804, 16 academies reported to the regents of New York 903 stu-

[^6]dents. Of this number, 429 were studying grammar and arithmetic. In 1801 a two-volume treatise on mathematice by Samuel Webber, Horlis professor of mathematios and natural philosophy, of Harvard, wis published. Of the first volume 245 pages are devoted to arithmerif. In an advertisement in the second edition it is stated that "Tho design in making this compilation is to collect suitable exercises to be performed by the classes at the private lecture on mathein given in the university (llarvard)." There is a close correap a diw betwren tho topics on arithmetic and thos. found in the first 345 pages of Piko's arithmetic, but the text is evon more advanced than Pike's. It is noticeably more abstract and philosophical. Numerous footnotescontain explanatory matorial, often concerning the romson for a rule.
.

spent in thin way, when I begged to be excused from learning to :ypher, and the old gentleman with whom I liver thought it wantime wested; * The next winter thern azas a teacher nom communicative and better fitted for his place, and under him mine progrew was made in arithmetic, and I made a toferable acquisition in the firat four rules, acconding to Dilworth's Schoolmaster's Assistant. of which the tearher and one of the eldest boys hed ach copy. The two following winters, 1794 and 170, I mesterod all the rules and examplee in the finet part of Dilwurth; that is, thrugh the various chapters of rule of three, practice, fellowahip, interest, ete., to geometrical jrogrewion and permutations:
The example or problem was worked on a scrap of paper, often roarse wrapping paper. Later slates wera used. After the pupil had finished the "sum" to his own satisfaction, he carried his work up to the mastar's daak for approval. The approval frequently consisted in the master comparing the pupil's work with his own in his eiphering book. This solution had roceisad his-master's stamp of approval in this same way and probably could homst of aeveral ganarations of unbroken descent. If the pupil's work was identical with the master's, it was approved and was ordered copied, together with the "rule," in the ciphering book, to be preserved. If them was not identity, the pupil was irequently commanded to "do it all orar again," oven though his work was correct. One pupil describes his experience thus:
Printed arithmetics were not timed in the Bowion echools till after the writer left them, ${ }^{2}$ and the custon was for the manter to write a problem or two in the manuerript of the 1 tpil every other way. No boy was allowed to cypher till he-was if yearm old, and writing and cyphering were never performed on the eame day. Mastor Tilewton had bern taught by Master Proctor, and all the suma he net for his pupile were copied exartly from his old manuscript Any bey could copy the work from the manumript of any further advanced then himself, and the writer never heard any explanation of any principle of arithmetic while he wan at achool. Indeed, the pupiln believed that the master could not do the aums he aet for them, and a story is tolil of the good old genthenan, which may not be true, but which is so characteristic as to afford a very just idea of the course of instruction. as well as of the simplicity of the auperannuated je-dasngue. -
It is caid that a boy. who had done the sum set for him hy. Master Tileston, carried it up, as usual, for examination. The old gentleman, as unuai, wok out his manuscript, compared the slate with it, and pronounced it wrong. The boy want to his seat and reviewed his work. but finding no error in it returned to the deek and anked Mr. Tileatun to be good enough to examine the work, lor he could find no error in it. This was too nul: ${ }^{\text {h }}$ to require of him. He growled, as his habit when displeased, but he compared ite atim again, and at last, with a triumphant smile, exclaimed: "Soe here, you nurly (gnarly) wretch, you have got it ' If four wha of hay coat so much, what will seven tons cost?' when it should be, 'If four tons of English hay coet eo and so.' Now goend do it all over again." 3

The origin of this plan of teaching probably was due to the scarcity of texts. But the continuance of a method of instruction which did not make use of a text can not be due to texts not being available

[^7]

I had alan a brand-new alate, for Ben used father's old one. It was set in in trame wrught by the aforsmid Ben, who prided himmelf on his mact at tonk, considering that he had never eerved an apprentirewhip in their une. There wa, no lack of timber in the fabrication. Mark Martin maid that he could make a better frame with a jarkknife in hie left hand and keep his right in his pocket.

My firat exercín was trancriling from my arithmetic in my manuscript. At the 4 pof the firat page I pernmed "ARITIMETIC'" in capitala an inch high and mo boad that this one word macherl entirely arrow the jage. At a due distance below I whin tho worl "Addition" in large cruan hand. beginning with a lofty \dot{A}, which aremed like the drawing of a mountain peak. fowering atwove the level widdernew bulow Then came" Rulc," in a littlemmaller hand, mo that there was a rexulargrada. tion frm the enormous rapitale at the lup, down to fine running. no, bobtling hand in which I wme off the rule.
" Nuw minte and procil and hrain rame into ume. I inet with no difficulty at fime; mimple aditition was as enty os counting my fingers. llut there was one thing l could filt underatand-that cartying of tome. It wad almolutely nocewary, I perveived, in
 our mohoolmanter, did not erv fit to explain. It in powible that it wan a myertery to him. Then came anbtraclion. The lormowing of tan wan amother unarrountable "jeration. The reabon memed un men at the very bottom of the well of acience; and there it remmined for that wintes, for no friendly hucket brought if up to my nush.

Fivery mole wan tranmeribed to my manumiript and pach sum likewime an it stond prijumad in the bxyk, and alde the whole procew of figure by which the answer was forated.

1 ish rule, uncrover, wuy or rather wan to be, cymmitiod to memory, word for word, alichs to me was the moet tedious and ditherult joll of the whole.' "
The purpose of texts in the hands of pupils was to lighten the lobor of the master as well as to assist the pupil in understandirg the subject. Dilworth says in his preface:

After nefurning to you my mowt hearty thank for your kind ecceptanco of my Die. (ivide to the Einglish Tongue, permit me to lay l, fore you the following pagee, which aro intonded an a help toward a more eparedy improvement of your wholan in nummen and at tha mame time to take off that havy hurden of writing out rules and quewtions which you have so loug laboured under.
And later:
And now, after all, it is powible that mome, who like fient to trad the old beateis Path, and to sweat at their lisinew when they may do it with Pleasure, may start an Objection aguinst the Use of this well intended Aswiatant.
Another authror writes in more detail and lets us see more of the schoolrodm technique and the reason for having printed texts:
Having some time aqo drawn upa set of rules and proper quations, with their answers aminexed, for the ume of my own whool and divided them into several bookn, at well for mort ease to mysoll as the readier improvement of my ocholars, 1 found them by experience of infinito use; for when a mastar tatée upon him that laborious (though necesary) method of writing out the rules and questions in the children's books he must either be toiling and alaving himself, after the toil of the school in over, to get ready the books for the next day, or elee he must loee that time which would be much better epentin inctructing and opening the minds of his pupils. . . There was, however, still an inconvenience which bindered them from giving me the atis-
fuction I at fist expented; i. e., where then are maveral boyn in a clem, nome one of ocher enust wait till tha boy who fiegt han the traik finiabee the writing out of thusa rules and quewious he wante, which derains the othera frum making that pogrew they. othrrwiwe might. haw they a proper bexik of rulew and exaanplen for rewh: to remedy whirh I wem prompteyt to compile one, ill arier to have it priated, that it might nit anir be of uma to my own moul but to such othern at would have their monlare mak.. a quick proruw.

Daniel hifams says in the proface to his Wholar's Irithmetie:

The Pupifs (inide, by Benjamin Dearlorn (1zso), is simply a ent. lection of the "most useful rules in arithmetic." The bank contans no ixamples ar probleme. Its purpene was "to lessel, the latoor of the master."

A fow anthons ntempled cu facilitate this phan of instruction even more than by simply providing a source for problems and rules. Isame (iremwemd, the first Americm to write an arithmetic wheh was published. snys in his prefuce:
 it wes proper. Fixamplen with Hanke hor hie praction Thin wen a principal find w the I'ndertaking: that alloh pereane as were demomite thenef micht have compro henge Challation of all the hert Rulex in the Art of Numbring, with axampl=.
 the Impromern is nuade upon meveral of the leve sorte of Pagne Thin moth at in eutincly new,

Daniel Adams rmbodios this same festure in his ivholar's Arithmetic in 1801. He says in his preface:

To answer the epveral intentione of thim work it will be nereewery that it nombllow

 he may afterwaran iranarilhi inta his lamik.

This text apperently athaned some pipularity, for by 1815 it had gone through nine editions. l'have sen a copy printed an late as 1824. I hava a copy printard in 1×20 which bears the imprint of the hand of some pupil who doubtlexs labored long over the involved and obscuro exercises.

When Dudley Leavitt edited an abridged edition of Pike's System of Arithmetic in 1826, there was aboo published-

A New (Typheriug Book, adapted to Pike's Arithmetir abridged; containing illustrative notes, a variety of useful Mathematical Tables, etc., with blank pages of fine paper, suficient for writiog down all the more interesting operations.'

[^8]
CIPEERING BOOK METHOD OF TEACHINO AEITHMETIC.

Texte in the hands of the pupils grew in favor, and thus the masters

 were retieved from the hurden of setting sums and dictating rules. The pupil had hoth in his text. But in doing this another nowed was croated. Many uf tho instructan passisesd practicolly mon arithmetical ability. Soditle, that the pupils lehered that the masters could nut do many of the sums, and without their own iphering books wonld be helpless. Thus when a new or different problem ajpeared ma the fexts, mastar and papil atike were paphexind if they cond not lonate it under a known rale. The following is typaral of what one may imarine happerned froquents

 the bew syatam. The unly quethen akkeal me at my fien examinution wan, What is

 key for the use of the tescher. A key, bomat ather with the text or separately, herame an sesential part of a series of arithmetios.

The use of the ciphering lowok is st maspicuous in the plan of mstructionand in the purpose of the :exte of has perion that it semens appopriate to call the period in the development. of arithmetic up to 1 S:2 the "(Yphering Brakik Perion."

Although the ciphering bow represents the most conspictuous foature of the teahing of arithantio during thas preriond, a careful ghalysis of the method of teaching reverato other factorn of fundamontal importance.

From the abstract to the conercte. - Wie have shown that the texts were organized upon this prianciple. It represcots also the order of the instruction. The experience of the loy who wits starterl on a
sum in simple addition-fiee columns of figures, and six figures in earh column" "- geems to be typiral.

In his sholar's Arithmetic Adams presenta alsitracty the four operations for integers and addition and suhtractionfor "compound nunabors." Following the completion of this sertion of the text, he says:

The scholar has now surveyed the ground work of arithmetic. It has lefore been intimated that the only way in whith numbers can lo afferted is by the operationa of addition, aubtraction, muliplication, and diviaim. These rules have sow been

- Qualed by F. Cajori, The Trachlag and History of Mathomatios in the United scaten, p. se.

sumably studied it coly so long as, it pleased him, or pdosibly his parants. Certain incentives combined to excite, intereat in the mubject. For example, cipharing was a relativaly rare accomplishment, particularly until after 1800. Because of the few who could cleim the titlg of "arithmeticker," the titlo carried with it considerabis distinction and honor as well as some practical advantages. Also, the subject was relatively new and considered difficult. These conditions combined to cause rivalry, and one can easily imagine the zeal with which the children to whom such a thing appeated attacked sums which had a reputation of being difficult. Under these conditions the need of motivating the work in arithmetic would not be felt as keenly under our present conditions. But when interest. in the work flagged, as it must have at times, or whan a pupil failed to become interested, we have no evidence that it was considered the teacher's function to stimulate interest except by one moans, i. e., punishment. In some cases the pupil was allowed to drop the subject.
The master sat or dictated sums and rules and axamined the pupil's work, or where the pupil possessed a taxt he had only to examine the work. These were the essential features of the instruc tion. In the case of some teachers they represented the total of instruction; other teachers were "more communicative." Just what this quality was we are not told, but we may drew some conolusiens from the texts of the pariod which ware presumably written by some of the "more communicative" teachars. In the text the aspistance given to the pupil is limited to an explanation, or demonstration, of an example which has been selected to illustrate a rule. The explanation is little more than an alaboration of the rule for this special case. The following explanation of the first example in division in Adams's Scholar's Arithmetic is typical. The example is, Divide 127 by 5.
Proceed in this operation thus: It being evident that the divisor (5) can not be contained in the first figure (1) of the dividend, tharefore sanume the first two figuree (12) and inquire how often 5 is contained in 12; finding it to be 8 timet, plece 2 in the quotient, and multiply the divisor by it, saying 2 times 5 is 10 , and place the aum (10) directly under 12 in the dividend. Subtract 10 from 12 and to the remainder (2) bring the next figure (7) at the right hand, mating the remainder 27. Again, inquire how many times 5 in 27 ; 5 times; plece 5 in the quotient, multiply the divieor (6) by the quotient figurs (5), saying 5 times 5 is 25 , place the sum (25) under 27 , subtract, and the work is done. Hence it appeaks that 127 contains 5,25 tiemes with a remeinder of 2 , which was left aster the leat subtruction.'
Such assistance is "telling" with no attampt at developments. The attitude is: The rule is, difficult because it is not finely enough divided. Hance we will state it for a particular case in thore detail. No attempt to develop the topic or to teach the pupil to think is indicated.

Chapter IV.
 WARREN COLBURN AND HIS RELATION TO' PESTALOZZI.

The beginning of a new epoch in arithmetic and arithmetio teaching in the United States was marked by the appearance of Warren Culburn's First Lessons in Arithnetic on the Plan of Pestaloazi, in 1821. Arithmetio was given a place of increased importanoe as a sohool subject; the content of the texts was changed almost abruptly; the aim of arithmetical instruction was modified to inolude mental training as an important factor; and much of the instruction in arithmetic hecame oral. Warreu Colburn exerted a greater influence upon this development of arithmetic in the United States than any other person. For this reason it is entirely fitting that we give here a brief account of his life.'

Warren Colturn's early life.-Warren Colburn was born March 1, 1793, in the part of Dedham (Mass.) oalled Pond Plain. In 1794 or 1795 the family moved into Clapboard trees parish, later to High Rook, and in 1800 or 1801 to Milford. Richard Colburn, his father, was a farmer, and the early life of the boy was spent on the farm. Presumably he participated in the usual activities of farm life. At the age of 4, Warren attended a summer district school. At Milford, he began to attend the winter district sohool. From Milford the family moved, about the year 1808, to Uxbridge, where he continued to attend the winter terms of the common school.
It was at this last place that his aptitude and expertness in arithmetic began to attract attention. His father encouraged this aptitude by taking into the family Mr. Gideon Alby, an old schoolmaster, who was good at figures. Mr. Alby instructed the boy in "oyphering" during the long winter evenings.

About this time Warren Colburn seems to have developed either a distaste for the farm, or an aptitude for machinery and certain linas of manufacturing. Apparently on his acoount, the family loft the farm about 1810 and moved to Pawtuoket, R. I., so that he might have the opportunity to learn something of machinery and manufao-

turing. During thenext five yearshe worked in factories, and it was not until the summer of 1815 that he began to prepare himself for college. Just why he developed a desire for a college education is not told us, but elearly he possessed a very keen motive for it. Such was his zeal that he prepared for college within 12 months, although apparently he had not studied languages before. For this reason he was ill-prepared in all except mathematics when he entered Harvard College in 1816.

His lifè in college and after.-Throughout his college course he was recognized as excelling all his alassmates in mathematics. It. is said that he applied himself with equal faithfulness to the classics, and in spite of his poor preparation he commanded the respect of his instructors and stood well in these classes. In mathematics he mastered the calculus and read thrqugh a considerable portion of the great work of Laplace. He graduated in August, 1820, at the age of 27.

Colburn received the genuine respect of all who knew him. At college he was liked and respected by all his classmates, although he was not accustomed to participate in the social activities of college life. He was older and more mature than his fellow students and seems to have taken his college studies very seriously. Hesas not brilliant in conversation nor in public speech. Soon after Colburn's death, Dr. Edward G. Davis, a classmate, wrote of him as follows:
In the constitution of Colburn's mind, many circumstances were peculiar. His mental operations were not rapid, and it was only with great patience and long-continned thought that he achieved his objects. This poeuliarity, which was joined with an uncommon power of abstraction, he poseessed in common with some of the most gifted minds which the world has produced. Newton himself, said that it was only by patient reflection that he arrived at his great results, and not by sudden or rapid flights. In Colburn this slowness and patience of invertigation were leading traits. It was not his habit, perhape not within his power, to arrive at rapid conclusions on any subject. * * His conclusions, reached slowly and painfully, were established on a solid basis, and the silent progrees of time, that great test of truth, has served but to verify and confirm them. ${ }^{1}$

The trend of his mind at the time of leaving college is reflected in his thesis, which was "On the Benefit Accruing to an Individual from a Knowledge of the Physical Sciences." One paragraph is especially significant:
The purpose of education is to render a man happy as an individual, and agreeabse, uafful, and respectable as a member of society. To do this, he ought to cultivate all the powers of his mind, and endeavor to acquire a general knowledge of every department of literature and science, and a general acquaintance with the world by habits of conversation. And this is not inconsiatent with the most intense application to a favorite pursuit. ${ }^{2}$
His life after leaving college is an example of the opiaion he expresses here. Although engaged as a superintendent of a man-
ufacturing company, a position of responsibility and one which required constant attention, Colburn found time to continue his educational endeavors. His algebra was completed after leaving the schoolroom. He was one of the-founders of the American Institute of Instruction, and in 1830 delivered a masterly address before that body on "'The Teaching of Arithmetic."
During his collegiate course he taught during the winter months in Boston, in Leominster, and in Canton. After leaving college he began teaching in a select school in Boston. He continued in this school for about two and a half years. He then gave up school-teaching and went to Waltham as superintendent of the Boston Manufacturing Co. In August, 1824, he became superintendent of the Lowell Merrimack Manufacturing Co., at Lowell. He continued in this position until his death, September 13, 1833.
In the winter of 1826, Lowell was incorporated as a town, and at the first town meeting Mr. Colburn was chosen a member of the superintending school committee. It is said that in order to provide time for proper attention to the affairs of the new school system, the committee often held their meeting at $6 o^{\prime}$ clock in the morning. Mr. Colburn served on this committee for two years and was reelected in 1831, but was excused at his own request. He was elected a fellow of the American Academy of Arts and Science in 1827. Also, for a number of years he was a member of the examining committee for mathematics at Harvard College.
While at Lowell he conceived a scheme for the intellectual improvement of the community by popular lectures on scientific subjects. 'lhroughout the autumn and winter of 1825 he gave illustrated lectures upon natural history, light, the seasons, and electricity. He continued giving popular lectures for several years, varying the content somewhat from year to year. On one occasion he received and accepted an invitation to deliver a series of lectures before the Mechanics Charitable Association in Boston.

- Colburn's arithmetics.-It was while teaching in Boston that he wrote his arithmetics. The First Lessons in Intellectual Arithmetic came from the press in the autumn of 1821. The Sequel to the First Lessons was published about a year later. ${ }^{1}$
In 1825 Colburn published An Introduction to Algebra upon the Inductive Method of Instruction. Although the algebra was not published until after he had ceased teaching, it was a part of his originally conceived plan which had its incipiency in his teaching experience.

[^9]

${ }^{1}$ I remember once, in convensing with him with reepect to his arithmetic (the First Lesens), he reioarked that the pupile who were under his tuition made his arithmetic for him; that he had only to give his attention to the queations they gated, and the proppor enewere and explanation to be given, in order to anticipate the doubte and diffculties that would arise in the minds of other pupila; and the removal of these doubts and difficulties in the aimpleat manner was the foundatron of that system of inftruction which his schoolbooks were the means of introducing.?

He published about the same time a series of reading books for young children. Each book of the series contained some appropriate instructions in English granmar. It is said that his method of presenting grammar gave results scarcely less admirable than in arithmetic. Before his death he had plannedut revision of his Sequel which was intended to meet the criticisms which had been made upon it. Unfortunately he had not committed his ideas for the revision to writing and nothing has come down to us of what probably would have been a work of even more merit.

The First Lassons wes immediately introduced into the schools and enjoyed greater popularity than any other arithmetic ever published. In 1856 the statement was made that 50,000 copies were used annually in Great Britain and 100,000 annually in the Umted States. It was even translated into foreign languages. In the Boston Public Library there is a copy printed in raised type for the blind.

The first teachers who used the First Lessons were enthusiastic in their praise of it. - Mr. Thomas Sherwin, principal of the high school, Boston, said:

I regard Mr. Colburn as the greateat benefactor of his age, with respect to the proper dovelopment of the mathematical powers. Pestalozzi, indeed, first conceived the plan; but Mr. Colbura realized the plan, popularized, it, and rendered it capable of being applied by the humbleat medioctity. Indeed, I regard the Firat lessons as the ne plus uller of primary arithmetic. ${ }^{3}$

Speaking of the First Lessons, Mr. Page said in 1843, in addreasing the American Institute of Instruction:

The reseon, the understanding, is addreased, and led $\rho \mathrm{n}$ step by step, till the whole is taken into the mind aff becomes a part of it. The memory is little thought of, yet the memory can not let it elip; for what has been drunk in, as it were, by the understanding, and made a paft of the mind, the mind never forgets. To how many a waywom and weary pupil under the old system; to how many a proficient who could number hia half dozan authors, and twice that number of manuscript cyphering books; to how many a teacher even, who had taught the old system, winter after winter, and yet mow but an "through a gleas darkly"; to how many such, was this book on its appearance Their Firat Leseons in Arithmetic? Warren Colburn's name ehould be written in a conspicuous plece, in letters of gald, for thie nervice. ${ }^{3}$

[^10]Pestalozzi's contribution to arithmetic.-By stating in the title of his first text that it was "on the plan of Pestalozzi" and by the use of the Pestalozzian unit table and fraction tables, Colburn definitely nonneeted his work with that of Pestalozzi, the noted Swise educator. Statements made by writers ${ }^{1}$ in recent years have tended to create the general impression that Colburn merely copied what Pestalozzi had already done. In presenting the evidence on this point, we shall first review certain phases of Pestalozzi's work.
Johann Heinrich Pestalozzi (1746-1827) was profoundly influenced by the writings of Rousseau, particularly by the Emile. Early in life he conceived the ambition of improving the social, moral, and religious conditions which then existed among the pesaant class of Europe. This was the guiding purpose of his life. Ait first he strove to accomplish it by reforming the vagrant and delinquent children by means of industrial training, but after his work at Stanz in 1799, - where the conditions made industrial training impossible, he directed his attention to improving elementary instruction, which he concluded was a more fundamental means ${ }^{2}$ of social improvement. This conclusion was based upon the assumption that one's social, moral, and religious status was dependent upon one's ability to form "elear ideas" froin confused sense-impressions and that the ability to furm such ideas was a general ability and capable of development as such. ${ }^{3}$
Pestalozzi states his concept of the immediate purpose of instruction when he says "in the youngest years we must not reason with" children, but must limit ourselves to the means of developing their minds." 4 His meaning is made more clear when he says in another place:
-The world lies before our eyes like a eee of confured sense-impreaxions, flowing one into the other. If our development through nature only is not auficiently rapid and unimpeded, the busines of instruction is to remove the confunion of theee sense impreasions; to separate the objects one from another; to put together in imagination thoee that resemble or are related to each other; and in this way to make all clear to us, and by perfect clearnese in theee to raise in us distinct idvar.: ${ }^{\circ}$
According to Pestalozzi nature has endowed the child with instincte and capacities or "faculties." These develop naturally, but this process is too slow, and man is to assist in the development of the ohild's "faculties" by asing the same materials and art of instruotion that are employed by nature. "The meanis of making olear all knowledge gained by sense-impressions," he says, "comes from number, form, and language." These are the "elementary means of

[^11]instruction, because the whole sum of external properties of any objeot is comprised in its outline and its numbers, and is brought home to my consciousness through language." This thesis furnished the basis for his curriculum. The method of instruction u as based upon the thesis that sense-impressions are the "absolute foundation of all knowledge."

Pestalozzi considered arithmetic the most important means for giving that mental training which would result in the power to form "clear ideas." " For this reason he took particular pains to identify the elements of the subject, and to formulate the series of steps in the method of instruction. He considered arithmetic to arise-
entirely fonm simply putting lugether and mparating meveral unita. Its bavis is esentially this: One and one are tum, and one from tuw leates ons. Any number, whatever it may be, ia only an abliresiation of thin natural, original method of rounting. But it is important that this conociousnesw of the origin of rolations of mumbers should not be weakened in the buman mind by the ahortening expmedients of arithmetic. It should be derply impreseal with great care on all the ways in which this art is taught; and all future steps shnuld he buit upoll the ennmanumesw. deeply retained in the human ound, of the real relationa of thingw which lia at the bothom of all calculation. If this is not done, this first means of gaining clear ideas will he dexraded to a plaything of our memory and imapination, and will be urelow for ite emential purpoes. ${ }^{2}$

Both the content of arithmetic and the method of teaching it, as Pestalozai conceived them, are implied in this statement. The "clear idea" which is represented by a number, e. g., seven, is obtamed by counting seven objects. The "clear idea", which is represented by 7 multiplied by 8 is to be obtained by counting the total number of objects in seven groups containing eight objects cach. This plan. was extended to common fractions and operations with them. The "shortening expedients of arithmetic" were not permitted until "clear ideas" of numbers and number relations had, become permanently fixed by having appropriate sense perceptions. In the beginning, the children might use their fingers, peas, stones, or other handy objects for obtaining the necessary sense perceptions. Later a "spelling board" with moveable letters (tablets) was used or the tubles which Pestalozzi devised.

The units table consisted of 100^{3} rectangles arranged in rows of 10 . Each rectangle in the first row contained 1 vertical mark. Each rectangle in the second row contained 2 vertical marks, and so on, each rectangle in the tenth row containing 10 vertical marks. The first fraction table was made up of 10 rows of squares, each row con-

[^12]Inble. pp. 210-211.

- In How Oertrude Trechea Her Chifdren, the trenshator (p. 216) states that the units table conststed of 12 rows of 12 rectangien each and that each of the fraction tables contelned 144 squarea. The tahtex ary devoribed by Unyer, p. 177 , as having ooly 10 rown, each consisting of 10 rectaughes, or squares. The tables were reproduoed by Colburn th this form. This lorm is aloo given in Pectaloasi's Ausgowkilte Werke, by Y. Mena.
taining 10 equares. The squares of the first row ware undivided. Those in the second were divided into two equal parts by a vertical line': those of the third into three equal parts, and so on. The second fraction table was constructed from the first by dividing the squares in the second column into two equal parts by a horizontal line, those of the third column into three equal parts, and so on.
These tables ware used in an elaborste set of exercises which were based upon Pestalozzi's concept of the nature of arithmetic and of the art of instruction. The exercises were prepared by Hermann Krüsi, a teacher of experience and ability who was an assistant to Pestidozzi at Burgdorf and later at Yverdun. They were published in $1: 103$ with the title, Anschauunglehre der Zahlenverhaltnisse, in three parts.'

There were eight sets of exercises upon the units table. ${ }^{2}$ In the first, the child was to point to the marks in the table and count out the combinations of the multiplication table up to 10 times 10. The second consisted of 540 exercises of the form: " 19 times 1 is θ times 2 and 1 time the half of 2 ." The object was to express each' number ns so maty twos, threes, fours, elc. In the third, a number expressed in terms of sixes was changed to so many sevens, or if expressed in terms of sevens, it was changed to so many eights, etc. For example, " 9 times 9 and 8 times the ninth part of 9 is 80 times 1,89 times 1 is 8 times 10 and 9 times the tenth part of 10." In the fourth, the tenth parts of pumbers are multiplied by the numbers 1 to 10 . The remaining sets of exercises were made increasingly complex, the sixth consisting of 360 exercises of the form, " 12 is 2 times 6,18 is 3 times 6 , therefore 2 times 6 is 2 times the third part of 3 times 6 ." Four of the eight sets of exercises contained a total of more than 2,000 exercises of the formal types illustrated.

The first fraction table was made the basis of 12 sets of exercises and the second of 8 more. One of these contained 17,280 exercises of the form" " 17 halves are 2 times 7 halves and 3 times the seventh part of 7 halves."

These exercises are purely formal, but Pestalozzi believed that by having a child grind through them laboriously, counting out each on the appropriate table, his mental powers would be developed, because the exercisas were based upon his psychological analysis of the process of the development of the human mind. Arithmetic had been reduced to its elements and the instruction psychologized by reduck tion to an elcborate formula.

[^13] p.177I.

It should be noted that no practical problems are included in the list, and there is no suggestion that arithmetic has a practical function. In the first stages, the child was expected to count familiarobjects. Some years earlier Pestalozzi said in "Leonard and Gertrude":

The instruction she [Gertrude] gave them in the rudiments of arithmetic was intimately connected with the realities of life. She taught them to count the number of eteps from one end of the room to the other; and two nows of five panew in one of the windows, gave her an opportunity to unfold the decimal relatione of numbers. She alno male them count their threade while spinning, and the number of turns on the reel when they wound the yarn into akeins. 1

No problems are involved here. The children were made to count these objects. But at this time Pestalozzi had not begun to formulate the art of instruction, and when he did, the idea suggested in this quotation was overshadowed by his interest in a poychological method. Since "clear ideas" of numbers and their relations were of the first importance, the symbols of arithmetic were to be delayed until the clear ideas were fixed in the mind of the child. The forms of operations were not included in the published plan. Thus the instruction necesstirily became oral.

No better summary of Pestalozzi's system of arithmetic can be given than that found in Biber's Henry Pestalozzi and His Plan of Education, which was published in 1831. He says:
In this calculating world shall we be understood if we say that Pestalozzi's arithmetic' had rio reference to the shop or counting house; that it dealt not in monies, weights, or meastres; that its interests consisted entirely in the mental exercime. which it involved and its benefit in the increase of strength and acuteness which the mind derived from that exercise?

Again, in this mechanical sign-loving age, shalt we be understood if we say that his arithmetic was not the art of handling and pronouncing ciphers, but the power of comprehending and comparing numbera? And, lastly, with a public whoee faith is exclusively devoted to what is immediately and palpably "practical and useful," shall we be believed if we add that, notwithstanding the apparently unpractical tendency of Peutalozzi's arithmetical instruction, he numbered among his pupils the most acute and rapid "practical arithmeticians"?
Such, however, was the case; his course of arithmetic excluded ciphers until numbers were periectly understood, and the rulee of reduction, exchange, and othens, in which arithmetic is applied to the common business of life, were superadded at the close of his arithmetical course, as the pupil's future calling might require it. 'The main object of his instruction in this branch of knowledge was the development of the mental powera; and this he accomplished with so much.succes that the ability which pupils displayed, especially in mental arithmetic, was the chief means of attracting the public notice to his experiments.

The Pestalozzian movement in America.-William McClure, a Scotch philanthropist, was the first disciple of Pestalozzi in the United States. The errliest presentation of Pestalozzian principles was by him in an article published in the National Intelligencer, June 6, 1806. ${ }^{\circ}$

This was followed by other articles of a more elaborate nature. In 1806 McClure induced Joseph Neef, who had worked with Pestalozzi, to come to Philadelphia, where he opened a Pestalozzian school in 1809. About three years later Neef removed to Village Green, Pa. From there he removed to Louisville, Ky.; thence to New Harmony, Ind; and finally to Cincinnati. In 1808 he published a treatise on education, entitled: Sketeh of a plan and method of cducation founded on the analysis of the human faculties and natural reason, fitted for the offopring of a free people and of all rational beings. A chapter was deroted to Pestalozzi's plan of teaching arithmetic.
The work of Neof and the writings of McClure served to advertise the principles of Pestalozai in the United States, but educational practice was not influenced directly. This was particularly true in New England before 1821. There were leaders in education who were acquainted with the work of Pestalozzi, and a little later there were many enthusiastic disciples of the Swiss schoolmaster. Educational periodicals, beginning with the Academician (1818-19), contained many articles on the work of Pestalozzi. In 1821, when Warren Colhurn published his First Lessons in Arithmetic on the Plen of Pestalozzi, the Pestalozzian movement in the United States was beginning to acquire momentum and to influence school practice.
conllarn's relation to Pcstalozzi. - In the preface to the first editions' of the First Lessons, Colburn acknowledges his indebtedness to Pestalozzi as follows:
In forming and armnging the several combinations the author has received considerable assistance'from the system of Pestalozzi. He has not, however, had an opportunity of seeing Pestalozai's own work on this subjeut, but only a brief outline of it by another. The plates also are from Pestalozi. In selecting and arranging the examples to illustrate thes combinations, and in the manner of solving questions generally, he has received no awistance from Pestalozzi.
The meaning of this statement becomes clear only when we consider the meaning which Colburn attached to the words, "combinations," and "examples to illustrate these combinations." The "several conbinations" to which Colburn refers are the number facis such as, "Eight and four are how many ?," "Three times seven are how many ?," "Fourteen less nine are how many ?" "Eight are how many times six?" " 6 is one-fifth of what number?" The "examples" are practical problems about things whieh children can understand. It appears that even in the early editions of the First Lessons, the Pestalozzian tables, or plates as Colburn called them, did not always accompany the text. Colburn, in his address on "The Teaching of Arithmetic," 1830, said: "It has often been asked whether the plates which sometimes accompany Colburn's Intel

[^14]$$
81758^{\circ}-17-5
$$
lectual Arithmetic, or anything else of a similar nature, are of any use to the learner."

In addition to this indebtedness to Pestalozzi, which Colburn explicitly acknowledges, a study of his writings shows that some of the underlying principles of his texts are essentially identieal with those held by Pestalozzi. This probably means that Colburn was acquainted with Pestalozzi's principles. But to appreciate fully the extent of Colburn's indebtedness to Pestalozzi, it is necessary to consider what he contributed as well as what he horrowed, and huw critically he selected what he used.
Soon after Colburn's death, Dr. Edward G. Davis, to whom reference has already been made on page 54 , wrote as follows:
Hirgreat and moet interestiny project, that of improving the wywtem of elementary instruction in mathematical ecience, appeass to have occurred to him during the latter part of his college life, and was the enbject of painful thought many yean hefive his fint wat made its appearance. It required, indeed, no small ehergy of mand thus to break through the trammeld of carly education, and strike ont a new fath for Cobburn, like others, had been brought up under a system the reverow of that which be now undertonk to mature and introduce.

Colburn's biographer says:
His Firm Lemons was, unquestonably, the realt of haw towhing. He mate
 He had read Pestaloza, probahy, while in molloge. That which wited him tives that which he deemed practicable and important, he imbitiod and male his onn He has been ometimes repremented an owing his fame to Pestalozai. That in readag the account and writinge of the S wiw philow fher he derived aid and confidence in his own invertigations of the general principles of education, is true. But, his indebtedne to Pestalozzi is believed to have been misunderstood and oxerrated."

After examining carefully all of the evidence which has heen obtainable, it is scarcely poseible to improve upon the justnest of these estimates of the originality of Warren Colburn's work. He died at the age of 40 . This, coupled with the fact that he did not begin to prepare for college until he was in his twenty-third year, and that he taught school only two and a half years after graduating from Harvard, indicates the genius of the man. He had the ability and courage "to break through the trammels" of tradition and of his own education. With only slight assistagce from the work of Pestalozzi, Colburn produced a text which revolutionized our school practice as no other text has done.

Chapter V.
 WARREN COLBURN'S ARITHMETICS.

The function of arithmetic, - Colburn recognized as of prime importance the utilitarian value of arithmetic, but he accorded an almost equal value to the subject as a "discipline of the mind." He says:
Arithmetic, when properly taught, is acknowledged by all to be very important a dimpline of the mind; mi much-so that, even if it had no pracital application which ehould ronder it valuable on its own acrount, it would still be well worth while witrow a considerable portion af time on it for his purpowe alooe. This is a very important consideration, though a secondary one compared with its prictical utility."
Aso, in another place:
Hew exercier mongthen and mature the mind so much as arithmetical calculaWons, if the example are made sufficiently simple wo be undertood by the pupil; therause a regular, though simple, proces of remeoning is requinite to perform themi, and the rewhes are attended with certainty. ${ }^{3}$

Colburn emphasized arithmetic as a factor of the child's education, sud he desired that it be taught to children 5 or 6 years of agt:
The fondnew which childron usually manifest for thewe esercisw, and the facility with which they perform them, mem toindicate that the acience of numbere, to a certain extent, should be arnong the first lewsons taught them. ${ }^{2}$

The First Lassons ware intended to be begun at the age f 5 or 6 and studied for three or four years, and then the pupil was to advance to the Sequel.

The ability to decide what operations were demanded by arithmetical situations was emphasized. The absence of rules, the emphasis upon the mental processes, allowing the pupil to do the example his own way at first and think his way through it, all are representative of Colburn's attitude. Colburn sought to make the pupil resourceful. He also wished to make the pupil skillful in performing the operations. This is shown by the large number of drill problems. Of the first 1,000 problems, 75 per cent are abstract and for drill.

THE FIRST LESSONS.

The arithmetic which became known as Colburn's First Leissons: was first published at Boston in 1821, with the title, First Lessons in Arithmetic, on the plan of Pestalozzi. With some improvements. ${ }^{3}$ In

[^15]1828 it had the title, Colburn's First Lessons. Intellectual Arithyetic upon the Inductive Method of Inotruction, which it still retain? The second-edition, 1822, contains ofly a few important changes from the first edition, although the number of pages was increased from 108 to 172 . In the first edition only the first three sections, which contain the four fundamental operations, were commenced with practical examples. In the second edition "every combination is commencend with practical examples." Since 1822 the body of the text has remained unchanged, except in the revised edition of 1884, of which we shall speak below. The Pestalozzian tables accompanied ${ }^{1}$ the editions of 1821, 1822, and 1826, which have been examined in the preparation of this report, but there is no reference to them in the editions of 1847 and later. In 1830 Colburn spoke of the tables as sometimes accompanying the text. The edition of 1847 contains directions for eight preliminary lessons in which the pupils are to he taught by counting objects. Only a small part of the original preface appears in this edition.

In June, 1863, Mr. Henry O. Houghton took over the First Lessons; the original prefacte was restored; and Part III, of 11 pages on "Written Arithmetic," was added. Otherwise this edition of the text is essentially identical with the edition of 1826 , except no reference is made to the plates which accompanied that edition. A revised edition was published in 1884. The book was thoroughly revised and enlarged, many of the prominent features of the earlier edition being entirely lost. Written arithmetic is mixed with the mental, the Hindu notation is introduced earlier, the numbers 2, 3, 4, etc., are taken up formally and separately (a tendency toward the Grube method, q. v.), and illustrations (pictures) are used.

These two editions of Colburn's First Lessons are still published by Houghton Mifflin Co., who assured an inquirer in 1913 that they were "still actively in print." The sale of the book has declined in recent years, but several thousand copiee are still used annually. The company mentioned a recent single order for 1,000 copies. Its use"extends from New England to the Western States.
i^{i}. Colburn's arithmetic, which is commonlyspoken of as the "Sequel," was frat publishad in 1822, with whe title, Arithmetic; Being a Sequel to First Lessons in Arithmetic. The Sequil has no such intereating history as the First Lessons. The original form was not revised. While it enjoyed a fair degree of popularity, it was amall compared with thitt of the First Lessons. Editions were printed in 1841, 1849, and as late as 1860.

Plan of the First Lessons.一 The book iteelf is divided into two parts. The first contains the examples, the tables of the common

1 The tables do not appeer to hayp heea bound with tho taxt, but separatoly in a amall pamphiet.
: Unime otherwise stated, the deveription or Colbarn's Firat Lesoces will be based upon the 1800 editicn.
denominate numbers, the systems of notation up to 100 , and a few explanatory notes. Part II is called a Key, and is primarily for the use of the teacher. In the earlier editions it included "an explanation of the plates," the manner of using them, and the solutions of the "most difficult of the practical.examples." These practical examples were solved in such a way as to "show the principles by which they are performed." In the later editions the portion which explained the plates was omitted.
The primary purposes of the book were to furnish the child with practical examples which required arithmetical operations and to provide exercises for drill upon the combinations which the child discovers are needed to solve the examples proposed. With few exceptions the practical examples are taken from situations in the life of children or from situations which children easily understand. The examples are about buying oranges, dividing apples among playmutes, buying family provisions, counting marbles, etc. There are a fiw examples from situations in commerce, but on the whole the problems of the text stand out in marked contrast to the commercial probleme with which the texts of the previous period were filled. In addition to the practical examples, there are well-graded lists of abstract exercises for drill. They stand to the practical examples in about the ratio of three to one.

The contents of the First Lessons.-Section I, which covers 19 pages, is concerned with addition and subtraction. Neither the addition nor the subtraction table is given. The first article consists of very simple "practical questions," and in.the second article the addition facts are called for in regular order by questions such as: "Two and one are how many?"; "Two and two are how many 7 ", etc. In the third article the me questions ape repeated, but the order is varied. The answers to the questions are not given in the book. Colburn assumes that the pupil has grasped the idea of addition from the practical questions of the first article. Knowing the meaning of such questions as "Three and two are how many?" the pupil can easily find the answer for himself. In the process of discovery he is to use sensible objects, such as beans, nuts, cte., or the plates.

- The next article has to do with larger numbers, and in some instances there are three or more numbers to be added together. The numbers from 1 to 10 are to be added to the numbers from 10 to 20 . In the fifth article subtraction is treated briefly, and in the next the numbers 1 to 10 are added to the numbers 20 to 100 . All the preceding are then combined together, and the section closes with a list of "practical questions which show the application of all the preceding articles."

Multiplication is introduced in Section II with such examples as: "What cost three yards of tape, at two cents a yard"; "What cost four apples at two cents apiece?" Colburn remarks that the pupil will see no difference between this and addition, and it is best he should not at first. After a while the idea of multiplication is to be explained to the pupil, and he is to give the solution to the problem in this form: "If one yard cost two cents, three yards will cost three times two cents." The multiplication table is treated in the same manner as the addition table.

Division is begun with examples such as: "How many pears, at two cents apiece, can you buy for four cents?" After five examples of this sort, the pupil is asked, "If you have eight apples to give to four boys, how many can you give to each?" The pupil is not told that this example involves division, but it is expected that "the pupil will scarcely distinguish it from multiplication." He is to solve the example by using his knowledge of the multiplication table or by counting it out with objects.

In the second article of Section III, common fractions are introduced. One-half is defined in a remark as one of two equal parts of a thing or number. Later a third and a fourth are defined in the same way. The pupil is given such questions as, "If an apple is worth two cents, what is one-half of it worth?" "What is one-half of two cents?" This last is answered, and the question "Why ?" is asked. The answer to this is given, "Because if you divide two cents into two equal parts, one of the parts is one cent."
In general, no answers and no suggestions are given to the practical examples in the text because they are "so arranged that the names will usually show the pupil how the operation is to be performed." But in the case of abstract examples, answers are frequently given in this section.
The common fractions from fourths to tenths are not explained, but they are taken up in order and the pupil is drilled on them in this fashion:
When wheat is eight shillings a bushel, what is oneeighth of a bushel worth? What are two-ighths of a bushel worth? What are three-eighths of a bushel worth? What are four-eighths of a buahel worth? Five-eighths? Six-eighths? Seveneighths?
When wood is eight dollars a cord, what part of a cord can you buy for a dollar? What part of a cord can you buy for two dollars? What part for three dollars? What part for four dollars? What part for five dollars? What part for six dollars? What part for seven dollars? How much can you buy fornine dollars? How much for ten dollars? How much for eleven dollars? How much for thirteen dollars? How much for fifteen dobllars? How much for nineteon dollars?
What part of eight is one?
What part of eight is two?
Three is what part of eight?
Four is what part of eight?

Five is what part of eight?

What do you understand by one-eighth, two-eighths, etc., of any number?
Seven is what part of eight?
How many eighths make a whole one?
Ten are how many times eight?
Eleven are how many times eight?
Twelve are how many times eight?
Thirteen are how many times eight?
Fourteen are how many times eight?
Section IV contains such problems as:
If a yard of cloth cost 4 dollars, what will 5 yards and 3 fourths of a yard cost? A man bought 2 oranges at 6 centsapiece: how many cents do they come to? He paid for them with cherries at 4 cents a pint; how many pints did it take? James had 8 oranges that were worth 5 cents apiece, and George had 5 quarts of cherries that were worth 6 cents a quart, which he gave to James for a part of his oranges. How manv oranges did he buy, and how many had Jamee left?
Problems like this last will be recognized as coming under the head of barter. (See p. 29.) Colburn leads up to them by problems like the second above, but no rule or suggestion is given. In problems like the first the operation calls for the multiplication of a mixed number by an integer.
Section V is devoted to such practical examples as the following, and to abstract exaples to exercise the pupil upon the combinations required:
James had 4 apples and John had half as many; how many had he? If 3 barrels of cider cost 9 dollars, what part of 9 dollare will 1 barrel cost? What part of 9 dollars will 2 barrels cost? A boy having 12 apples. kept 1 fourth of them himself and divided the other 3 fourths of them equally among 4 of his companions; how many did he give them apiece? If 2 men ean do a piece of work in 6 days, how long would it take 4 men to do the same work?
In the next section the pupil is asked to find the whole when a part is given. Some of the more difficult problems are:
A man sold a cow for 21 dollars, which was only seven-tenths of what ahe cost him; how much did she cost him? When he bought her, he paid for her with cloth at 8 dollars a yard; how many yards of cloth did he give?
There is a school in which 2 ninths of the boys learn arithmetic, 3 ninths learn grammar, 1 ninth learn geography, and 12 learn to write. How many are there in the school, and how many attending to each study?
The section closes with a miscellaneous list in which there are such problems as:

A fox is 80 rods before a greyhound and is running at the rate of 27 rods in a minute; the greyhound is following at the rate of 31 rods a minute; in how many minutes will the greyhound overtake the fox?
If a staff 3 feet long cast a shadow of 2 feet at 12 o'clock, what is the length of a pole that casts a shadow 18 feet at the same time of day?
Section VII contains exercises for drill upon the multiplication table for the numbers 10 to 20 multiplied by the first 10 numbers,

Fellowship is prosented by such problems as:
Two men bought a bushel of corn, one gave 1 shilling, the other 2 ahillings; what. part of the whole did each pay? What part of the corn must each have?
Two men hired a pasture for 58 dollars; one put in 7 horses, and the other 3 horsed; what ought each to pay?
Three men commenced to trade together; they put in money in the following proportion; the first, 3 dollars, as often as the second put in 4, and as often as the third put in 5 ; they gained 87 dollars. What was each man's share of the gain?

Two men hired a pasture for 32 dollars. The firat put in 3 sheep for four months, the second put in 4 sheep for five munths; how much ought earh to pay?

Following this last problem, which is the first in double, or compound fellowship, an explanatory note of five lines is given. In the case of simple fellowship no explanation is given.

There are a few "arithmetical puzzles of which the following are typical:

Said Iarry to Dick, my purse and noney together are worth 16 dollars, but the money is worth 7 times as much as the purse; how much money was there in the purae? and what is the value of the purse?
A man having a horse, a cow, and a sheep, was usked what was the value of each. He answered that the row was worlh twice as much as the sheep, and the horse 3 times as much as the sheep, and that all together were worth 60 dollars. What was the value of each?
A man driving his geese to market was met by another, who said, "Good morrow, master; with your hundred geese." Says he. "I have not a hundred, but if I had hali as many more as I now haye, and two geowe and a half, I should have a hundred." How many had he?
What number is that, to which if ita half and its third beadded the sum will be 55 ?
Objective materials.-In the Key directions are given for using the ' Pestalozzian tables ${ }^{1}$, and other objective materials. Before 1821, children used their fingers, and even their toes, in learning to count, and probably counted out problems on them. But this practice seems to have been tolerated rather than recognized as a legitimato and valuable method of learning number facts. Certain it is that Colburn was the first author in the Linited States to introduco objective materials in an arithmetic text. The plates represent just one type of objects which he used. Beans, grains of corn, pioces of crkyon, marks, etc., are recommended for use and even preferred. He says:
The first examples may ba solved by means of beans, pean, etc, or by Plate I. The former method is preferable, if the pupil be very young, not only for the examples in the first part of this section, but for the tirst examples in all the sections. ${ }^{2}$

Mental arithmetic.-Colburn's First Lessons is an "intellectual" arithmetic, i. e., the examples are to be solved without the use of pencil and slate or paper. The Hindu symbols for writing numbers are not given until page 50 , and methods of calculating with figures are not given. Numbers greater than 100 occur in very few problems, but within this quantitative range Colburn has treated many

I See p. 57 for a description of these tables.
${ }^{2}$ Key to First Lessons, p. 144.

ciples," and the application of arithmetic, which he designates as "subjecte." To him the "principles" mean arithmetic and the applications. merely a field for the exercise of these principles; denominate nufmbers, mensuration, percentage, interest, etc., are not taken as the basis for separate chapters, or even distinct topics. "To give the learner a knowledge of the principles" is his purpose, and to this end the problems are grouped about the principles.

Colburn takes the position that "When the principles are well understood, very few subjects will require a particular rule, and if the pupil's properly introduced to them, he will understand them better wi'tuut a male than with one." For axample, if a pupil understands woll the relation botweon a product and ita factors in all its phasas, porcentage and its applications require no particular rule and will prosent no difficulty to the leamer. At most the learner will need to be told the meaning of the new terms used in exprossing the problem. As would naturally be expected from such a point of riow, the applications of arithmetic do nut influence nor determine the organization of Colbum's tox s s.

The plan of the Sequel.-The subdirisions and order of the "principles" are unusual. Multiplication of integors follows addition instead of subtraction. In fractions, multiplication is placed firat and is followed by addition and subtraction. Both multiplication and division of fractions are divided into several cases. 'The Sequel is divided into two parts. The first consists of graded lists of problems with an occasional suggestive note to define some new torm or to interpret the meaning of the problem. "The second part contains a devalopment of the principlea'' based upon problems.

The two parts are to be studied together, when the pupil is old enough to comprehend the second part by reading it himself. When he has performed all the examples in an article in the first part, he should be required to recite the correeponding article. in the second part, not verbatim, but to give a good arcount of the reasoning. When the principle is well understood, the rules ' which are printed in italice should be committed to memory.

Colburn gives rules only for the principles and not for the applications of arithmetic. . The table of contents of the Sequel makes no mention of any of the applications of arithmetic, several of which usually have a chaptor devoted to them.

Colburn mentions the following "subjects" as being specifically included in the text: Compound multiplication, addition, subtractiong and division; simple interest, commission, insurance, duties and promiums, common discount, compound interest, discount, barter, loss and gain, simple fellowship, compound fellowship, equation of paymonts, alligation medial, alligation alternato, square and cubic
${ }^{1}$ Few rulbe are given, and such as ate giren are placed at the ond of a mection. It is intended that the 'pupil will dovelop the rule as the reault of solving problems before he reeckes the printed stalement.

78

ABITHMETIO 18 A BOHOOL SUBYROT.

measure, duodecimals, taxes, mensuration, geographical and astronomical questions, exchange, tables of denominate numbers.

Topics omitted.-Colburn omits some topics entirely. He specifically mentions the rule of three, position, and powers, and roots. The reasons he gives for their omiseion are:
Thoee who understand the principles sufficiently to comprehend the nature of the rule of three, can do much better without it than with it, for when u*ed, it obecune mother than illustrates the subject to which it is applied.

* * This (rule of position) is an artificial rule, the principle of which can not be well understuod without the aid of algebre; and when algebra is understuxnl, passition is useless. Beaidea, all tive examples which can be perfonued by position may be performed much more easily, and in a manner perfectly intelligible without it
Powens and roots, though arithmetical operatione, cume more properly within the province of algebra.

It is interesting to note that some of the omisions which Colhurn made nearly a century ago are still considerod delantable by some teachers.

How the "principles" are presented.-A mastarly exposition of our decimal sfretem of numeration is given in which Cellom shows its function. Aftar defining the numbers 1 to 10 ? ${ }^{\text {paman given to col- }}$ lections of units, he continues:
In this manner we might continue to add units, and to kive a name to each different
 would be abeolutely impoesible to remember the different names; and it would alas ine impoeable to perform operatione un large numbers. Bexides, we must hercesarily y sup somewhers; and at whatever number we stop, it would atill be jowihte thadd mure; and should we ever have occasion to do so, we ahould be obliged to intiont new uames for them, and to explain them to others. To avoid these inconvenifures, a methad has been contrived to exprese all the numbers that are neceerary to be uned. with very lew names.
The firat ten numbers have each a distint name. The collection of ten simple unita is then considered a unit; it is called a unit of the mecond order. Wo sprak of the collections of ten, in the sane manner that we speak of simple units; thus we say one ten, two tens, three tens, four tens, five tens, six tens, seven tens, eight tens, nine trins -These expressions are usually contractend; and instead of them we say ten, twenty, thirty, forty, fifty, sixty, seventy, eighty, niuety.
To express the numbers between the tens, the numbers below ten are to be added to the tens. Colburn then explains how the names of numbers which are used in common language have been derived by such a method. After telling how a hundred and a thousand are made up he indicates how "this principle may be continued to any extent," and expresses his admiration of the decimal system of numeration by saying:

Hence it appears that a very fotr names eerve to exprees all the different numbera which we ever heve occanion to use. To exprese all the numbers from pue to nine thousand, nine hundred and ninety-nine, requiree, properly speaking, butr"twelve" different names. It will be ehown hereafter that these twelve names express the numbern a great deal further.

The "Arabic" and Roman methods of writing numbers are carofully explained in 11 pages. The Roman system is given in a footnote, with the statement that "a short description of it may be interesting to some." In Part I it is not mentioned.

Although it was Colburn's plan that the pupil should study the First Lessons beforo commencing the Sequel, yet he wrote the Sequel in such a way that this would not be "absolutely necessary." For example, in the decclopment of addition he begins with a problem any child who is old enough to study the book can understand. After defining addition as putting together two or more numbers to "ascertain what numbers they will form," he gives the problem: "A person bought an orange for 5 cents and a pear for 3 cents; how many cents did he pay for both ?" This problem is solved by taking the 5 and joining the 3 "to it a single unit at a time."
suys Colburn:
A child is obliged to go through the process of adding unite every time he has orrasion to jut two mmbere together until he can remember the results. This, horever, he soon dearna ho do twhe has frequent occasions to put numbers together.

He also points out that tho child can not make much progress in arithmetic until he learns perfectly the addition tables up to ten.

Colburn's development of carrying in addition is based upon the decimal structure of the system of numeration. The first practical exminple calls for 24 and 8 to be added. He points out that 24 is simply an abbroviation for 20 and 4. "To add eight to twenty-four, add cight and four, which are twelre. To twelve add twenty. But twelve is the same as ten and two, therefore we may say twenty and ten are thirty and two are thirtv-two." Three more practical examples, cach one becoming inore difficult, are explained in the same way. Ho then defines "carrying" by niying: "The reserving of the tens, hundreds, otc., and adding them with other tens, hundreds, etc., is called carrying." The principle of carrying is further illustrated by the following example, whose solution he explains:

[^16]cents a gallon $9^{\prime \prime}$ After the example is solved by addition, it is pointed out that "if it were required to find the price of 20,30 , or 100 gallons, the operation would become laborious." Colburn goes on to say:

If I heve learned that 4 times 4 are 16, and that 4 times 3 are 12, it is plain that I nead not write the number 34 bup once, and then I mey my 4 times 4 are 16 , reepring the 10 and writing the 6 unite es in addition. Thon again, 4 times 3 (tens) are 12 (tens) and 1 (ten which I reoorved) aro 13 (tans).

Multiplication is then defined as "addition performed in this manner."
Subtraction follows multiplication and is presented as the rererse of addition. Colburn begins by giving five examples which, "though apparently different," all require the same operation-i. e., subtraction. The pupil solves the firat examples by using his knowledge of addition.

The operation for the rase which requires "borrowing" is pre62. $\quad 51+12$
sented by writing the numbers thas: 17 is writton $10+7$
Division was considered to be a particularly diffecult topie. Coblurn starts with some simple problems which he handles in the following fashion:

A buy having 32 apples wished to divide theu copally anoong 8 of his emppaniona How many nust hegive them apiere?

If the bey were not accustomed to catculating, he would pmbably divide them by giving one to each of the boys, and then another, and won. Hut to give them no spiece would take 8 applos, and cone apioco would take 8 more, and wo on. The question then is, to how many timen 8 may be taken from 32 ; or, which ie the rame thing. to soe how many times 8 is contained in 32 . It is contained four times Ans. 7 unch.

A boy haring 32 applex was able to give 8 to cach of his companions. How many cumpaniona has he?

This question, though different from the other, we perceive is wo be performed exactly like it. That is, it is the quextion to eee how many timex K is contained in $3 t$. We take away 8 for one boy, and then 8 for auother, and wo on.

A man having 54 cents, laid them all out for oranges at 6 cents apiere. How many did he buy?

It is evident that as many times as 6 cents can be taken from 54 cente, mo many oranges be can buy. Ans 9 orange*.

A man bought 9 oranges for 54 cents: How mu." Aid he give apiece?
In this example we wiah to divide the number 54 into 8 equal parte, in the rame manner es in the first queetion we with to divide 32 into 8 equal parts. Let us obwerve. that if the oranges had been only one cent apiece, nine of them would come to nine cents; if they had been 2 cents apiece, they would come to twice nine cents; if they had been 3 cents apiece, they would come to 3 times 9 cents, and so on. Hence the question is to see how many times 9 ie contained in 54 . Ans, 6 cents apiece.

In all the above questions the purpose was to how many times a amall number is contained in a larger one, and they may be performed by subtraction. If we exanine them again, we shall find also that the queation was, in the two first, to see what number 8 must be multiplied by in order to produce 32 ; and in the third to see what
the number 6 must the multiplied by to produce 54 ; in the fourth. to what numbi 9 must be mulsplied by, or rather what number must be multiplied by 9 , in enler to produce 54.
The operation by which questions of this kind are performed is called dirision. In the lant example, 54, which in the number to ber divided, in called the fridend; θ, which is the number divided by, is called the divisor; and 6 , which is the number of thanm 9 is contained in 34, is called the quotions.

Colhurn then goes on to tall how to prove division, and following this takes up the came when the combination is not one that has nccurred in the multiplication table.

1t 3 cents aptoce, how many peam may be brught for 57 centa? It is ovident that as many peara may be bought an there are 3 cente in 57 centa. But the molution of this quertion doen not appear wo eany do the law on wrount of the pratater number of timon which the divisor is contained in the dividend. If we opparate is into two purto it wall apparar more asy: : $57=30+27$
We know by the cable of Pythamorar that 3 ia motaincl in to arn times, and in 27 mine times. Consequently it is contajned in 57 ninetern limes, and the anmwer is 19 prare
This same method is exphained for four more problems, in which . he points out how the breaking up of the dividend may he determined. He them continues:
 but we may do it ak we preform the operation
In lita days how many werens.
"pration $1: 3=70+56$. Inslead of revolving it in thim mamer, we will write it doviose followe:

$$
\text { Mividend } \begin{array}{r}
126 \\
70 \\
\hline 56 \\
56 \\
- \\
\hline
\end{array}
$$

1 oherve that: can not be contained lon timen in 1:2b: I therefore call the two firet figure on the lift 12 tens. of 120 , rejerting the 6 for the presenti. 7 is comainerd more than once and not mop much as twice in 12; consopuently in 12 tens it is contained mons: than 10 times and lew than 20 times. I take 10 times 7 , or 70 , out of 126 , and there remmins 56 . Then 7 is contained 8 times in 56 and 18 cimee in 126 .

The devalupment is contmued through four more problems, the last only being abstract and haring a divisor of five digits. The rule is then stuted, the last thing in the section.

Short division is presented last as a "much abridged" mothod of performing division when the divisor is a simall number.

Fractions arise in examples which require division when there is a remainder. For examplo, to tell "How many yards of cloth, at 6 dollars a yard, may be bought for 45 dollars" a fraction is necessary. In Sections XII to XXIV, ihclusive, except Section XX, common fractions are treated in detail. '(Soe table of contents in Appendix.) A conspicuous feature of this treatment is the departure from the
usabal order. It begins with a section in which factions are manufactured by the pupil in solving such examples as " What part of 7 yards ia 4 yarda ${ }^{\text {" }}$ " What part of a gallon is a pinit' 9 " "What part of 5 dollars is 72 conte $?^{\prime \prime}$ "What is the ratio of 25 to 09 "

Improper fractions ane required to la chasged to whole or mined number In solving such axamples as "If a family consume $1 / 3$ of n barcel of thour in a wewk, how many harrels will last them four weeks: How many will last them 17 wewks!" "The merna operattion is repuired in such as the following: "If i 15 of a harrd of thour
 them! How many wotes will is atis serve them!" "The multuphe cation of a fraction by an moner by malaplying the numerator,
 improper fractions to whole or minad numbers.
 into parts, as, "Bought 43 tons of imm fur 4.171 dollans; how mith - was it a con!"; and tho muttipheation of a whohe momber hy a fraction, as, "At $\$ 4.20$ perthex what in the cost of 1 tof a biox uf whages:" These two problems require the samb arithmetieal थperations. In this section are phand atch prohlame as.

 diatamer?

What is 43.53 of a yand"
 of the first comp how much had he well it for".

 and tho thind. N . What nught ea h ta pay:
 reduction of componmd mambers. profit and lom. discomat, and partnership. Al of these retuire mething mome than the divinion of a whole number into parta ur its mulaplication by a fraction. The abore types of prohloms are prosented with no explanatory notes ar headings. That they have ta do with a variety of arithmation topics Colburn is not. concerned. But he is anxious that the pupil learn the kinds of situations which call for this oparation.

From the standpoint of the mathematician it is interesting to note that Colburn comments upon calling the operation of this section, multiplication, by saying, "Multiplication, strictly speaking, is repoating the number a cortain number of times, but by exteusion it is made to apply to this operation." Division of a fraction by a whole number and multiplication of a fraction by a fraction are presented in Section XVII. In the next section it is pointed out that a fraction may be multiplied by dividing the denominator.
ction XIX has tu du with the addition and subtraction of fractions and the neressary roductione ta a common denominator and to -lanar tarms. The suction comitaina 32 axamples. of which 21 are practical. Tho drill upen findinge the common divisor, least common multiphs, and roducing faotions os a common denominator and

 - momesting and is eloqumt of his gnocral plan to have the pupal Wo what a procese is for lefone how is arked to perform it.

 munhad han lot!"

The "remarkable emenmstanco" had come about from tha two Mas: of maltiplying a fracton. Maltiplying a fraction by dividing ha se denominator gave the rewult in lower tarme than by multiWhing the mamerator of the fractum.

 nior.
 motaton is applathet as being simply an rxtension of the derimal -y-smin which a firure has a phare value and the topie is treated
 "perations with decimal fration- are similar to oprations with whole

 and he devedngs this m detal.

The last section is comeraing circolating decomals, a topic we did net find in the bexts of the presions period. A ciroudating decimal is ono such as arises when ume attempts of reduce a common fration
 ending sequenee of figures, but in this sequence certain series of figum will ho repated. After Colburn shows the weasion for circulating decimnk, lat explains how one may find the oquivalent common fraction when they havegiven a circulating decimal. Except for a list of miscellaneous axamples, the text closeswith a brief presentation of the proof of multiplication and division by casting out nines.

Definitions and information given when needed. - We have already pointed out this feature in several instanoes. It is one of the ohief
$.81758^{\circ}-17-1$
characteristics of both of Colburn's texts. Colburn's treatment of parcentage, interest, etc., is perhaps most typical of this feature and of his attitude toward the applications of arithmetic. On page 21 of the Sequel, in the section on multiplication, this paragraph is given immediately preceding the first problem on interest:
"Interest is a reward allowed by a debtor to a creditor for the use of money. It is reckoned by the hundred, hence the rate is called so much per cent or per centum. Per ceutum is Latin, signifying by the hundred. 6 per cent signifies 6 dollars on a hundred dollars, 6 cents on a hundred cents, $£ 6$ on $£ 100$, etc,, so 5 per cent signities 5 dollars on 100 dollars, etc. Insurance, commission, and premiums of every kind are reckoned in this way. Discount is so much per cent to be taken out of the principal.
Colburn evidently considers this sufficient explanation for such problems as the following, for he gives nothing additional either here or in Part II:
What is the interest of $\$ 43.00$ for 1 year at 6 per cent?
What is the interest of $\$ 247.00$ for 3 years at 7 per cent?
Imported some books from England, for which I paid $\$ 150.00$ there. The duties in Boston were 15 per cent, the freight $\$ 5.00$. What did the books cost me?

A merchant bought a quantity of goods for 243 dollars, and sold them so as to gain 15 per cent; how much did he gain, and how much did he sell them for?

The next mention of percentage is on page 83. This problem is given:

A merchant sold a quantity of goods for $\$ 273.00$, by which he gained 10 per cent on the first cost. How much did they cost?

Following the problem is this note:
10 per cent is 10 dollars on a 100 dollars, that is $10 / 100$. 10 per cent of the first cost therefore is $10 / 100$ of the first cost: Consequently $\$ 273.00$ must be $110 / 100$ of the first cost.

A little farther on in the list we find the following problems and notes:

A merchant sold a quantity of gooderfor $\$ 983.00$, by which he lost 12 per cent. How much did the goods cost and how much did he lose?
Note.-If he lost 12 per cent, that is $12 / 100$, he must have sold for $88 / 100$ of what it cost him.
A merchant sold a quantity of goods for $\$ 87.00$ more than he gave for them, by which he gained 13 per ceht of the first cost. How much did the goods cost him, and how much did he sell them for?
Noce.-Since 13 per cent is 13/100, $\$ 87.00$ must be $13 / 100$ of the first cost.
A man having put a sum of money at interest at 6 per cent, at the end of 1 year received 13 dollars for interest. What was the principal?
Note--Since 6 per cent is $0 / 100$ of the whole, 13 dollars must be $6 / 100$ of the principal.
A man puta sum of money at interest for 1 year at 6 per cent, and at the end of the year he received for the principal and interest 237 dollars. What was the principal?
Note--Since 6 per cent is $6 / 100$, if this be added to the principal it will make $106 / 100$, therefore $\$ 237$ must be $106 / 100$ of the principal. When interest is added to the principal, the whole is called the amount.

What sum of money put at interest at 6 per cent wrill gain $\$ 53^{\circ}$ in 2 years? Note. -6 per cent for 1 year will be 12 per cent for 2 years, 3 per cent for 6 months, 1 per cent for 2 months, etc.
Suppose I owe a man $\$ 287$, to be paid in one year without interest, and I wish to pay it now; how much ought I to pay him when the usual rate is 6 per cent?
Note.-It is evident that I ought to pay him such a sum as put at interest for 1 yeur will amount to $\$ 287$. The question therefore is like those above. This is sometimes called discount.

Later in the sections on decimal fractions special methods for interast are given in the same way, i. e., by means of a note following a problem which calls for a special mothod.

symbol 3; or the symbols $\overline{5}+4$ equal the symboli 9 .' As a meand to this end, in the First Leesons, the characters 1, 2, 3, etc., are not given until page 50, and the system of notation and numeration is not given beyond 10 until page 69. Before these symbols and the system of notation and numeration are given; the pupil has learned the four fundamental operations for integers. The symbols are introduced by saying, "Instead of writing the nemes of numbers, it is usural to exprese them by particular characters called figures." Thus before the pupil is asked to learn number symbols, he doubtiese has felt the need for them.
' In giving his rasson for these two features Colburn says; referring to the contemporary practice:
The following are some of the principal difficulties which a child has to encourter in learning arithmetic, in the urual way, and which are seldom ovencome. Fintrt, the examples are so large that the pupil can form no conception of the numbers themselves; therefore it is imposaible for him to comprohend the reasoning upon: tham. Socondly, the first examples are usually abstract numbers. This increpmes the difficulty very much, for even if the numbers were so small that the pupil could comprehend them, he would diecover but very little cohnection between them and practical examples. Abstract numbers, and the operations upon them, must be learned from practical examples; there is no such thing as deriving practical examples from thoee which are abetract, unlees the abetract have been firet derived from thoee which are practical. Thirdly, the numbers are expreed by figures, which, if they were used only as a contracted way of writing numbers, would be much móre difificult to be understodd at first than the numbers written at length in words. But they are not used merely as words, they require operations pegyliar to themselves. They are, in fact, a new language, which the pupil has to learn. The pupil, therefore, When he commences arithmetic is presented with a set of abstract numbers, writion with figures, and so large that he has not the leaet conception of them even whea: expresed in words. From these he is expected to learn what the figures signify, and what is meant by addition, substraction, multiplication, and division; and at the same time how to perform thee operations with figures. The consequence is, that he learna only one of all theed things, and that is, how to perform thees óperations: on figures. He can perhaps transinte the figures into words, but this is uselees ance he doee not understand the words themselvee. Of the effect produced by the lour fundamental operations he has not the least concoption.

- After the abstract examplee a fiew practical examples are usually'given, but theee again are so large that the pupil can not reason upon them, and consequently he could .not toll whether he must add, substract, multiply, or divide, even if he had an adequate ides of what these operations are.
The common method, therefore, entirely reversee the natural procees; for the pupil is oxpected to learn general principles before he'has obtained the particular idesin of which they are composed.?

Oral instruction.-Just as the most conspicuous feature of the method of teaching arithmetic during the oipharing-book period wnid the absenge of a textbook in the hands of the pupil, and the consol quent exclusively written arithmetic; so the most conspicuous feáture,

of Colburn's method is oral instruction, or the solving of exercisesin the mind. Colburn does not provide for written computations in the First Lessons. In fact, as we have mentioned, he doess notintroduce the number symbols at all in the first third of the book. The quantities of the problems throughout the book are small enough to bring the numbers within the comprehension of the pupil and also so small that he may solve the problems mentally. It is therefore probable that pupils solved the problems of the First Lessons without recourse to written calculations. When there were no "sums" to be done on paper or slate and submitted to the teacher for inspection, it beeame necessary for the teacher to hear the pupils give an oral - solution of the problem. Thus, at least in. the case of the unger pupils, instruction in arithmetic was largely oral after the appearance of the First Lessons. The Sequel was a "written arithmetic," but in it close confrection is made between "oparations performed in the " mind" and the "application of figures to these operations."
-From concrete to abstract.-Colburn invariably introduces a topic or a new combination by a "practical question." In the case of a new combination the "practical question" is followed by the same combination in abstract form. For example, the multiplication of an integer by a fraction is begun as follows:
If a yard of cloth costs 3 dollars, what will 1 half of a yard cost?
What is 1 half of 3 ?
If a barrel of beer costs 5 dollars, what will 1 half of a barrel cost?
What is 1 half of 5 ?
In the proface to the First Lessons the necessity of this order in - teaching children is emphasized:

Theides of number is first acquired by observing sensible objects. Having observed that this quality is common to all things with which we are acquainted, we obtain an abstract idee of number. We first make calculations about sensible objects; and we soon observe that the same calculations will apply to things very dissimilar; and finaly, that they may be made without reference to any particular things. Hence from particulars we establish general principles, which serve as the basis of our reasonings and enable $\boldsymbol{\gamma}^{\text {a }}$ to proceed step by step, from the most simple to the most complax operations. It appears, therefore, that mathematical reasoning proceeds as much upon the principle of anslytic induction as that of ny other science.

Examplee of any lind upon abstract numbers are of very titde use until the learner Has discovered the principle from practical extmples. They are more difficult in themeolves, for the learner, does not see their-use, and therefore does not so readily understand the question, But questions of a practical kind, if judiciously chosen, show at once what the combination is, and what is to be effected by it. Hence the pupil will much more readily discover the means by which the reaultia to be obtained. The miad ia aho extetly meminted in the oper fainne by reference to aepsible objects. Whan the pupil learns a naw combination by meane of abstract eramples, it very seldom happeon that he understands pradical examplen more easily for it, because he does not discover the connection until he has performed several practical exay ples and begin generalize them.

And it is not too bold an ameertion to say that no man ever actually learned mathematics in any other method than by analytic induction; that is, by learning the principles by the examples he performs, and not by learning principles first, and then discovering by them how the examples are to be performed.
The full significance of this feature of Colburn's method appears only when we compare it with the practice of his time. It marks, as do other features of his work, an sbsolute break with the past. The principle is fundamental with him, and its effect is elearly evident throughout both texts ass well as in his method of teaching.
Objective method.-In the First Lessons the pupil is not told the "combinations," but he is expected to discover them by using objective materials, the Pestalozzian tables, or beans, peas, etc., in perforning the operations which the "practical questions" called for. The advantage of asking the child to think in terms of concrete objects is mentioned in the above quotation. It should be noted that - Colburn recommends the use of objeotive material only when a pupil has need of if.: It is not his purpose to introduce objective material for the purpose of amusing pupils, and he intends that they shall transcend the use of it. The objective method; next to the oral instruction, is the most conspicuous feature of Colburn's method of teaching.
Assisting the pupil.-It has already been indicated that Colburn had a definite and accurate conception of the working of the human mind. He also knew the appropriate manner in which to assist this working. This he discusses in the preface to the Sequell
When the pupil is to learn the use of figures for the first time, it is best to explain to him the nature of them to about three or four places, and then require him to write. some numbers. Then give him some of the first examplee without telling him what to do. He will discover what is to be done, and invent a way to do it. Let him perform several irrhis own way, and then suggest some method a little different from his, and nearer the common method. If he readily comprehends it, he will be pleased with it, and adopt it. If he does not, his mind is not yet prepared for it, and ahould be allowed to continue his own way longer, and then it should be suggested again. After he is familiar with that, suggest another method somewhat nearer the common method, and so on, until he learns the best method. Never urge him to adopt any method until he understands it and is pleased with it. In some of the articles it may perhaps be neceesary for young pupils to perform more examples than are given in the book.
One general maxim to be observed with pupils of every age is mever to tell them directly how to perform any example. If a pupil is unable to perform an example, it is generally because he does not fully comprehend the object of it. The object should be explained, and some questions asked which will have a tendency to recall the principles necessary. If this does not succeed, his mind is not prepared for it; Fand he must be required to examine:it more by himself, and to review some of the principles which it involves: It is useless for him toperform it before his mind is prepared for it. After he has been told, he is satiafied, and will not be willing to examine the principle, and he will be no better praparel for another case of the same kind than he was before. When the pupil knows that he is not to be told, he learny
to depend upon himealf; and when he once contracta the habit of understanding That he does, be will not easily be prevailed on to do anything which he doee not underatand.

- Also in his address he speaks at length upon how the teacher should assist the pupil:
If the learner meeta with a difficulty, the teacher, instead of telling him directly how to go an, should examine him and endeavor to discover in what the difficulty con. aita; and then, if poesible, remove it. Perhape he doee not fully understand the question. Then it should be explained to him. Perhape it depende upon. some former principle which he has learned, but doee not readily coll ta mind. Then he ahould be put in mind of it. Perhape it is a little too difficult. Then it should ho simplified. This may be done by subetituting smaller numbers, or by separating it into parts and mating a distinct question of each of the parts. Suppoee the question were this: If 8 men can do a piece of wort in 12 days, howhong would it take 15 men to do it? it might be simplified by putting in amaller numbers, thus: If 2 men çan do a piece of work in 3 daya, how long would it take 5 men to do it? If this should still the fouyd too dffficult, zay, If 2 men can do atpiere of work in 3 days, how long will it take 1 man of do it? This being anstyered, eay, If 1 man will do it in 6 days, how long will it take 3 men to do it? In what time would 4 men do it? In what time would 5 men do it? . By degrees, in mome such wray as this, lead him to the original queation. 8ame mode of this kind ahould wways be practiced; and by no means should the learner be told directly how to do it, for then the queation is loet to him. For when - the question is thus polved for him, he is perfectly matisfied with it, and he will give himself no further trouble about the mode in which it is done.

All illustrations ahould be given by practical examples, having reference to sensible objects. Most people use the reverse of this principle and think to simplify practical oxamples by means of abotract ones. For instance, if you propese to a child this simple queation: George had 5 cents, and his father gave him 3 nore, how many had he then? I have found that most persons think to simplify such practical examples by putting them into an abotract forn and anying, How many are 5 and 3 . But this queetion is alreedy in the simpleet form that it can be. - The only way that it can be made easier is to put it into senpller numbers. If the child can count, this will hardly be neomeary. No explamation more simple than the queetion iteelf can be given, and none is required. The referance to sensible objecte, and to the action of giving, asists the mind of the child in thinking of it, and suggeata immediately what operation ho must perform; and he sets himself to calculate it. He has not yet learned what the num of those two numbers is. He is therefore obliged to calculate it in, order to anwer the question, and he will require some little time to do it. Most persons, when much a question is propoeed, do not observe the process going on in the child's mind; but because he does not answer immediately, they think that he doee not understand ${ }^{-}$ it_{3} and they begin to aeaist him, es they suppoee, and eay, How many are 5 afid 3? Can not you tell how many 5 and 3 are? Now thin latter question is very much more difficult for the child thith the original one. Beeridee, the child would not probably perceive any ctannection between them. He can very easily undertand, and the queetion iteelf muggesta it to him better than any explanation, that the 5 centa and 3 crante ane to be counted together; but he doee not easily perceive what the abstract manbetit 6 and 3 have to do with it. Thin is a proces of generalization which it thete childreen mone time to leem.
Initif cane, apecially in the ewily otage, it will be perplexing and rathe injuriova
 tivic Aind it in mill wope to tell him the realt, and not make him find it htomell. If the quation il aumiently aimple, he will solve it. And he ihould be allowed timen to do it and not be perglexed with queations or interruptions until he has dono it

$$
1
$$

But if be does net nolve the queetion, it will be because he does not fully comprebend it. And if be can not be made to comprehend it, the question should be varied, either by varying the numbers, or the objecto, or both, until a question is made that he can answer. One leing found that he can answer, another should be made a little varied and then another, and so on till he is brought beck to the one first propoeed. It will we hetter that the question remain unanswered than that the child be told the answer, or assisted in the operation any further than may be neceesary to make him fully understand the question.

It is clear that Colburn understood that a dfficulty initiates reflective thought. The pupil is at first to meet a difficulty, feel a need, have a problem. This is the first step. Second, the pupil is to make his own hypothesis; the teacher is to keep hands off. Unless the prollem is one for which the pupil is nọt prepared, he will "invent" a way to solve the problem. It may be a crude one, but nevertheless a method which will control the value. The thought process involved here is that of making hypotheses and verifying them. The instructor is in the background. Colburn would have his function to be that of explaining to the pupil the meaning of the problem and its demands, and to see that the pupil was finally made acquainted with the best method of solving the problem.

Inductive instruction.-In the titles of both of his arithmetics, Colburn dxplicitly states that the method of presentation is inductive rather than deductive. His inductive development is not formal and mechanical, but here as elsewhere he has grasped the manner of the working of the humar mind. The complete texts must be studied to appraciate fully the quality of his inductive development of a topic, but the development of division in the Sequel will give an idea of the charm of Colburn's inductive treatment of a topic. (See. p. 74.)

This is as near real induction as it is possible to get in a textbook. The pupil is given problems which he can understand and approciate; the first he may solve in a crude fashion, more difficult problems force him to make hypotheses, and the rule is delayed so that the pupil has had an opportunity to test his hypothesis enkpirically.As a consequence, the pupil probably has discovered the appropriate rule before he reaches thie statement of it in the text.

Class instruction.-During the oiphering-book period, the instruction of necessity was individual. Before 1821 the need was being keenly felt for a more expeditious manner of teaching arithmetic. The attendance was increasing very rapidly, and arithmetic was beginning to be taught quite generally to all pupils. This condition made it necessary to instruct the pupils in groups. Colburn not only advocated elass instruction, but gives suggestions as to the technique.

It la chiefly at recitation that one scholar can compare himself with another; con. . mequently they furniah the most effectual means of promoting emuiation.' They
aro an excellent exercise for the scholar, for forming the habit of expreasing hin iless properly and readily. The scholar will be likely to leann his leseon more thomughly when ho knows he shall be called upon to explain it. They give him an opportninity to diecover whother he undentenda his subjert filly or not. Which he wit not always be sure of, until he is called upon to give an arcount of it. Keritations in arithmetic, when properly conducted, produce a habit of quick and reary reckoning on the epur, of the occiaion. which can be produced in no other way except in the businem of life, and then only when the businees is of a kind to require constant practice. They are therefore a great help in preparing echolars for businges.

Directions concerning recitations must be general. Each tuarher must manage the detail of them in his own way.

In the fing plare, the acholar should be thoroughly prepared hefore he attempts to recite. No lensons should be received by the teacher that aro not well learmed. If this is not inaisted on; the brholar will goon bocome careleas and inattentive.

It is beat that the recitations, both in intellectual and written arithmetic, uhould bein classes when practicable. It is bewt that they should be without the look, and that the echolar should perform the examplee finm hearing them read by the tearher. Queations that are put out to be oolved at the recitation ahould beeolved at the rmitation, and not answared from memory. The scholars should frequently be required to explain fully and clearly the stepa by which they eolve a question and the reasons for them. Recitations should be conducted briskly and not aniffered to lag and become duli. The attention of every ocholar should be kept upon the subject, if posaible, so that all shall hoter every thing that is said. For this it is nercesary that the queations paas around guickly, and that no foholar he allowed a longer time ω

* think than is abeolutely negesary. If the lewon is properod so it should be, it wilt: not take the scholar long to give his answer. Idis not well to ask one echolar wo many questions at a time, for by that there is danger of losing the attention cf the rewt It is a good plan, when practicable, so to panage the recitations that every acholsw shall endeavt to solve each'question that is propoeed for solution at the time of the recitation. This may be done by propoaing the quertion without letting it be known Who is to andwer it until all have had time to solve it, and then calling upon someone for the answer. No.further timeshould be allowed for the solution; but if the acholar, so called on is not ready, the question should be immediately put to another in the same manner: '

He also shows a trace of the monitorial system when he says:
It will oiten be well to let the elder pupils hear the younger. This will be a navelay exercise for them, and an assistance to the instructor.

Teacking pupils to study.-Colburn recognized the value orteaching pupils how to study. He says:
There is one more point which I shall urge, and it is one which I consider the ninst importait of all. It is to make the scholars afudy. I can give to directious how to do it. Each teecher must do it in his own way, if he doee it at all. He who succeeds in mating his scholars study will succeod in making them learn, whether he dows it ty puniahing, or hiring, or persuading, or by exciting emulation, or by making the studies so interenting that they do it for the love of it. It is ueelees for me to say whichiwill produce the bert effects upon thescholars; each of you may judge of that 10, youroblves. But this I my, that the one who make his scholars study will make thegn learn; and he who does not will not make them learn much or well. There
"Addrass, "The Teaching of Arithmetic."

colburn on the teaching of abithmetic.

never has been found a royal roed to learning of any kind, and I preeume there never will be. Or if there should be, I may venture to say that learning so obtained will oot he worth the having. It is a law of our nature, and a wine one wo, that nothing truly valuable can be ohtuined yithout latmo.'
In another place he suggests some neressary conditions:
This subject almo augeerts a hint with regard to making thoka, and eqjecially thowe ort
 endeavire th thiuf and reasm for him. It ia nifen very well that there should the repular couree of reamoning in the, bention the anbjert taught: but the learner ought not to be compelled to purrap it, if it can powibly be a voided, until he has examined the rubject and crime to a conclumion in his own way. Then is is well for him to fullow the reasening of whers, and wee huw they think of it.
Motimation, - Although Colburn recognized that there were several ways for making arithmetic interesting, he selected the problems which esperially appeal to childran and cansed them to feel a need for a procoss or definition before it is given. 'The types of problems are well illustrated by, those already giren. A fealing of need for the process is created by introducing eanh topic by problems. The very plan of dividing the texts into two parts, and thus separating the problems from the development of the principles, operates to create motive for the study of the principles. Even in the development of the principles, the rules are not stated until after the explanation of the operation which is itself based upon a problem. Whatever drill sems necessary is not given until after a considerable number of practical problems have been solyed by the pupils.

But eventhese devices do not represent all that Colbum has done tw notivate the arithmetic work. His style of writing and his ability to see things from the child's pojnt of view assist materially in this respect, and the way he guides the learner in the development of the principles adds a tough of genius to the whole work. The following is from the Sequel, p. 193:
A bry wishe to divide i of an oranke equally bet ween two other boys; luw much must he give thept apieco?
If he had three orangea to divide, he might give them one apiece and then divide the other into two equal parts, and give one part to each, and each would have $1 \frac{1}{2}$ orange. Or he might cut them all into two equal parts each, which would make wix parta, and give three parts to each, that is, $\frac{1}{2}=11$, as before. But accurding to the question, he has z or 3 pieres, consequently he may give 1 piece to each, and then rut the other into two equal parts, and give 1 part to each, then each will have ? and $\{$ of t. But if a thing be cut into four equal parta and then each part into two equal parts, the whole will be cut int, 8 equal parts pr eights; consequently $\frac{1}{}$ of f is $\frac{d}{}$. Each will have t and t of an orange. Or he may rut earh of the three parts into two equal parts, and give $\frac{1}{2}$ of each part to earh boy, and then each will have 3 parta, that is f . Therefore $\frac{1}{2}$ of $\{$ is i . Ans. .

Two more problems are similarly explained, though somewhat more briefly. He then draws a conclusion as follows:

In the last three problems the divisiun is parformed by multiplying the debuthinator. In general, if the denominator of a fraction the multiplited br 2 , the unit will hit divided into twice as many parta, consequently the parta will be unly onerhali wher large an before, and the same number of the small parts le taken, as was taken of thé large, the value of the fraction will be one-half as much. If the denominator be apil. tiplied by three, each part will be divided inw threw parts, and the seme number if - parts be taken, the fraction will be one-third of the value of the first. Finally, it the 'denominator be multiplied by any number, the parta will he momay timmemall.r. Therefore, w divide a fraction, if the nuateratior can mot be divieted exactly by the divisor, multiply the danominatur by the divisur.

PABT III. THE INFLDENCE OF WARREN COLBURN IN DIRECTING THE MRTEJIOPMENT OF ARITHMETIC AS A SCHOOL SLBJECT. ACTIVE PRRIOD, 1821-1857; STATIC PERI0D, 1857-1892.

Chapter Vil.

ARITHMETIC AS A MENTAL DISCIPLINE,

During the first half of the nineteenth century the growth of cities, the rise of manufacturing, the infention of nachines, new modas of traval and trmsportation, and other factors comhinad to produce a damend for a highar dogree of education than had been neceasary when lifo was mom simple. At the same time, the home began to contributo less to the child's education. As a conisequence there came to he a new concept of the purpose and meope of the education privided by the schomla and an arakened interest in public selools. This moroment which has been known as "the commontrehool nevival" was mpst prominent between 1835 and 1850 . The interast in tho work of Pestalozai, which we have notod in Chapter IV, the prodnction of texte by American authons, ${ }^{1}$ and the extension of the puhlic-sehool system to include primary sehools and high schools were phase of the largor movement.

The production of arithmetio texts by American Ruthors, the modification of the content of arithmetic; the extension of the instruction in the subject, and the attempte to provide texte for young children were celements in the general deyelopment of arithmetic as a school subject in the United States. This movement had been growing simeo the clown of the Revolutionary War, and the adoption of a Foderal monoy wha a phese of the "grat awakening." In the three proceding chapteps we have told of Colburn's contribution. It is the prohlem of this chapter and the two following to show in what whys and to what extent Warren Colburn augmented and directed this devalopment.

The limits of the period. -The importance of Colburn's First Lessons justifits the selection of 1821 as matking the beginning of this period in the devolopment of arithmetic as a school subjeot. Following this date there was a period of very rapid development. New types of texts appeared. Somo of these were revised frequently to keep pace with the growing ideas of the time. But, beginning about 1860, these revisions ceased; and after this date it is seldom that we find a new; type of text which attained any importance.

I Arithenetlif texts by American muthors havio beal mentioned on page 14.

90
 -ARFGITRTC AB A BCIOOL SUBJYCT.

Thare was no grat orent, such as tho appearance of Colhumis First lassons, to mark the close of this pariod. At times from $15: 1$ (1) Tho2 innovations ware attempted, some acquiring a nonsideralile following. Howover, after about 1800 , thoro was no eqential changa in tho aim or content nor modifieation in the mothod of tanchang Which was not local or mondy temporary until wall toward tho clowa of tho century. Then now types of encte bocamo peppular and ne phaced those wheh had bemen usud for avor a quartar of a comtary.
 avents indieste that the data of this tansition was nbout 1800 . We have chosen 1 sed, the date of the Report of tho Commitum of Tunt. Althongh this ryport dealt only incidentinlly with arithmatic, it was the ottional darlaration of "the tamehare of the linited Statan and marked the algmmant of a muminor of gur greaiost edncators on the rido of arithmetikal molorm.

The date marking the and of the proce suf formatization and the begimuing of a statjonary period is likawine dillibult to detarmme with, examenoss. We have chowin 1857, tho date of tha lave of a series of movisons of Rayes arithmetios. hast prior the this date, gevisione of Liay's arthmothes wery frequent, but in 18:57 a form was attanod which was not altored motil 1578 and only slightly then. Other texte and oronte do not, in ponoral. sperify tho deto 185a, hat they agree in indicating tho begiming of a rulatively static: period about : 860. In viow of tho pepmlarity and the widesproad and centinued use of Kay's arithmetics it is appropriata that we shloct the dato marking thoir maturity.

Wental arithmetic. ${ }^{-}$- The arithmotic of the precteding priod was confined to calealations with writtan symbols. Thero won mouxamples or probloms in which the quantitios wone small to bo sulfed without tho ume of pancil or pen. In fact, the subjoct was frequents npoken of as "eiphering." Colhurn intandud that the problems of his First Laseons should bo solved without the aid of writan symble, and be constructed tho book if ruch a way that this was mada neceasary unlass the toanher supplemented the toxt by instructions in."pritten arithmetir."

After 1821 the more popular arithmoties wero issued in the furm of a series. Usually one book of such a sermes was derated to mental arithmetic. A fow, authors united the two typos of arithmetic in the same text. Mental arithmetic was universally tayght, frequently in a course paralleling the one in writton arithmetic.

[^17]

Tents for young chileren. -The texts of the preceding period were mut suitablo for you:ig rhildren. Thus when arithnatic war taught to thom no text was used in tho hands of the pupils. It was unly a fow para prior to 1821 that thery was an attempt to provide a text fir foung chadron.' But won after 18:2l many primary books mifured and a sorion of arithmetion was not complete unlow it conlamed a tuxt speritically intended for soung ehilemen. There were whe propared to procede Colburn's First lassons, whel Coblhurn damad was simple conogh for children 5 ar 0 yemon of age.
Vhat of the primary texts embedied tha ume of objedtes. In mans of them there wen piequme in which the pupl wens to ennm tho mumber of whjecte. In some texte examples wern represented araphically by means of marks, dotes, ate., or by aomad pietures of the whects mentioned in the exereise.
 A. Wי havo shiwn, aritlimetic: was taght beratase of its practical Babe in cortain trades and comunere. A disciplinary funetion of artimente was emphasized by Pestalozai. whe bedieved that it was
 bealved by the und of his tables or wher semable ohjects. Colburn racerrized mental discipline as whe of the impertant functions te be rombed from the study of arithantic. The recornition of the dasaphompy function, particularly as altuched to mentad arithmetir, grew uftar the appearance of Colburn s Firse latsons until it overshadowed the other functions. Davies says in the preface to his Schocl Arithmetie, las5: "In tho preparation of this wurk, two objecte havo been kept "qustamly in view: Firse, to make it educational; mecoml, to makerit practical." "The educationad value which $\mathrm{D}_{\text {a }}$ ves has in mind Forr is mental disciplime. doseph liay says in the profmer of has

[^18]Davies puts it somewhat more forchbly in his Intellectund strithmetic:

 Werntivate the fin'ulty of abstraction, and to sharpen and develop the remoning poweres.
In the Vru Vqual Mental Arithmetic, by Edward Brooks, 1873, the auth ays: The asjenk oducational agency than it should have been. Consisting mainly of rulea and grethode
of oparations, without preeenting the reasone for them, it failed to give that high degree of mental discipline which, when properly taught, it is so well calculated to afford. But a great change has been wrought in this respect; is new area has dawned upoh the science of numbers; a "roval road" to mathematics has been discovered, so graded and strewn with the flowers of reason and philoophy that the youthful learnercan follow it with interest and pleasure; and one of the most influential agente in this work has been the system of moutal arithmetic.

The importance of this change can hardly be oterestimated. The study of mental arithmetic, introduced hy Warren Colhurn, to whom teachere and pupila owe a debt of gratitude which can never be paid, affords the finest mental discipline of any study in the public erbools. When properly taught, it gives quicknese of perception, keennese of insigat, toughness of mental fiber, and an intellecinal power and grasp that can be acquired by no other elementary branch of atudy. An old writer on arithmetic quaintly called his work "The Whetstone of Wit." Mental arithmetic is, in my opinion, truly a whetstone of wit. It is a mental grindstone; it sharpust the mind and gives it the power of concentration and prenetration. To omit a thorough course of mental arithmetic in the common achool is to doprive the pupil of one of the principal sources of mental power.

Arithmetic as a science. -Since the time of the (ireek philosophers arithmetic, has been conceived of both as an art and as a science, or as some futhors put it, as practical arithmetic and theoretifal arithmetic. The writers of the texts which were used during the ciphering-book period usually recognized both of these aspects of, arithmetic, but they seem to hare Wone so mainly for traditional reasons. In the schools arithmetic was an art. - But in this period a number of texts became colored with a philosophic point of view. The theoretical part of arithmetic was given more emphasis. The principles were more carefully formulated, and special attention was given to their interrelation and organization into a logical system. Greenleaf in the National Arithmetic (first published 1835, revised 1847,1857) gives elaborate lists of definitions, axioms, and principles, and a chapter on properties of numbers." By some writers the "science of numbers" is used synonymously with arithmetic.'

Arithmetic, the important school subject.-By reason of more simple texts and by reason of the emphasis upon the disciplinary function of arithmetic, its relative importance as a school subject grew during this period. It became the custom for pupils to receive instruction in arithmetic when they began to attend school, which in some cases was before their fourth birthday. ${ }^{2}$

Frequently, mental arithmetic was recognized as a separate subject, and two periods a day were given to arithmetic in several of the grades, in some schools from the third or fouth grade to the eighth, inclusive. William B. Fowfe said in 1868:

Arithmetic is the all-absorbing study in the public schools of Massachusette, and, probably, in thoee of every other State. As far as my observation goes, it occupies more of the time of our children than all other branches united. ${ }^{3}$

[^19]
Another writer said:

Having such prominence, the subject came to be taken as the basis of gradation and of promoting pupils.'

It is difficult for the teachers of to-day to realize that arithmetic has not always been one of the fundamentals of the school curriculum. There is the general impression that the curriculum consisted of the three R's until it was enriched by the addition of the more modern subjects. Hence we fail to appreciate that it was not until the second quarter of the nineteenth century that arithmetic was accorded its place in our schools as one of the traditional educational trinhty.

Inductive method.-The complete title to Colturn's First Itessons ' contained the phrase, "on the inductive method of instruction," and this method was a conspicuous feature of his texts. During the active period from 1821 te 1857 , authors frequently included some reference to the inductive method in the title of their texts. In the construction of their texts many followed closely Colburn's plan. Some atrthors adhered to the deductive plan, and after 1857 the texts, even those which had previously embodied the "inductive method," were generally organized deductively.

Skill and thomughness.-Increasing emphasis was placed upon skill in performing the operations of arithmetic. This is testified to by the increased space given to drill exercises and the publication of "Lightning Calculators," which were numerous in the last half of the rentury. In the preface to the New Intermediate Arithmetic, Felter shys:

This book is designed to make the pupil quick and accurate in calculation, and to give him a knowledge of thoe pritciples and proceeses of arithmetic which are needed in the ordinary transactions of life, together with akill in their application.
To accomplish this, the drill card axercises are arranged to furnish any desired amount of practice in computation; while the processes and analyees leading directly to the rule, tugether with the number, gradation, and character of the practical gxamples, give the knowledge of necessary principles and skih in their use.

Felter says in the preface to An Introduction to Arithmetical Analysis: "The importance of being thorough in the elements of arithmetic can not be too often impressed upon the teacher."

In brief these are the significant features of arithmetic as a school subject in this period. In each of them there are evidences of Colburn's influence. In the next chapter the important texts of the period are described, and in them we shall see more clearly the influ, ence of Colburn upon the arithmetic of this period.

- 'J. K. Greonwoodi Prinofples of Education Preotioully Apptied, 1887, p. 154. ${ }^{1}$ Edition of 1825 .
$81758^{\circ}-17 —$

slate and pencil are not required in the performance of the leasons contained in Part First." The first part of the Part Second consists "f oral aritlametic, and the speond of written arithmetic. Part Third is dasigned for advanced scholars, and as such is a scholarly presentation of the subject froin, a mature peint of riew.

4. As soon as the series was complete, it displiced Colbum's texts in the Boston schools, and the North American Arithmetics, Part First, whs an alternative text as late as 1866-67. The series had been used in Chicagg preceding 1866 . In medition of Part Finst, it is sated that it has been adopted in Boston, Salem. Portland, Providence, New York. Philadelphiag and Ionisville. I haverexamined ropies of Part Sefond dated 1832, 1839, 1848,"1854, and of Part 'Flird dated $1834,1844,1850$. Part. Third appeared in two forms, hoth coperighted in 1834 . One of these is announced as revised and colarged. Tha culargement is a list of questions for examination. Otherwise the sories does not upplar to have been revised.

Charles Davifs (1798-1876) graduated from the Military Academy at West Point in 1815. He was professor of mathematics and natural philosoph! in that instita ion from 182:3 to $18: 37$, and professor of mathematics in Trinity. College, Hartford, $18: 39$ to 1841. Later he taght mathenatics in the normal schoul at Albany. N. Y., and was professor of higher mathematics in C'áambia College, New York City from 1857 to 1867 , when he was made emoritus professor. Daries's primary arithmetic was published under the tide of F'irst Lessons in Arithmetic in 1840. There is also " Irimary Tabla Book, which . appears to have been published separately ato first. In 1856 the primary book is advertised as Iaries Primary Arithmetic and Table Book. Davies Intellectual Arithmetic was first eopyrighted in 1838 and recopyrighted in 1854, 1862, 1881. The practical arithmetic was first published in 1833 under the title ('ommon School Arithmatic. In $18: 38$ it was "endarged and inproven" and called Arithmetic Designed for Acoudcmies and Schools. In the preface of this edition Davies describes the book as an "elementary treatise." In 1848 this was revised and callad Dames' School Arithmetic, and in 1855 'another revision changed the titue to Daries' liow School Arithmatic. Later a "New Series of Arilhmetics" was jrepared, and the School Arithmetic became I'ructical Amthmetic and a new work, Elements of Written Arithmetic, was addad to the series. Tho first edition of the University Arithmetic was published in 1846. It pessed through many rditions and was often repised. Greenwood says: "Whenever the discovery of new methods of presentation demanded a revision, the publishers and authors at once complied."

In 1912, the following arithmetics by Charles Davies wore listed hy the American Book Company: Primary Arithmetic, Practical Anithmetic, Elements of Written Arithmetic, and University Arithmetic.

Davies prepared "a full analysis of the science of mathematics," and explained " in connection the most improved rathods of tearhing." This was published in 1850 under the titie, The Logir and Utility of Mathematics. This was based upon the system of mathematical instruction which had beon "stadily pursued at the Military Academy (Wost, Point) for orer a quartor of a century." In dascribing this "system of mathematical instruction," Davies sam:
It is the ewence of that syetem that a principle be taught before it is applied in' practice; that general prin:iplice and general lawa be taught. for their rontemplation is far mote improving to the nuind than the examiuation of ieolated propaitions. and that when such principlos and such laws are fully comprohénded, their appli rations be then taught as cimmequencie or practical revilta
Thia vig education led al an early day, to the union of the Fremithand Eng lish aystems of mathenation. By this union the exagt and beautiful methods of generalization, which distinguiah the French echool, wdre blonded with the practical methocis of the Enelinh syatem.'

And he sums it up by saying:
And in that fyertem (at the Military Academy) Matbematice is the basis: Science precedea Art: Theory green before Practice: whe general formula embraces all the particulare.

Phis system was tho basis of Davios's arithmeties. In them, arithmetic is first a seience.

In estimating tho work of Charles Davies, Greenwood says:
The influence of Dr. Thatier o writing* on subrequent authore in this country can hardly be overetimated. It may be very properly regarded as the begioning of a revolution in achootbook making. simplicity and extreme clearnesa became the leading ideas in the minds of authors, whoftudied how to be undertand by children and young people. ${ }^{2}$

Joseph Ray (1807-1855) entered the Ohio Medical College in Cincinnati in 1828, graduated, and became a surgeen. In 1831 he became a toacher in Woodward College and professor of mathematics in 1834 . This position ho held until the institution was changed to Woodward High school in 1851, when ho berame president.

Ray's primary book was first published in 1834 with the title, Ray's Tables and Rules in Arilhmetic and sold for 6 cents. In 1844 it was remodeled and became Part F'irst, of Ray's Arithmetical Course. Since then it has been revised in 1853, 1857, 1877, 1903, and has appeared under several titles. In 1857, it was called Primary Lessons, in 1877, Ray's New Primary Arithmetic. The in'el- lectual arithmetic was first published in 1834 under the title, "he Little Arithmetic; Elementary Lessons in. Intellectual Arithmetjc, on the Analytic and Inductive Method of Instruction. In 1844, it was enlarged and called Ray's Arithmetic, Part Second; in 1857 it was

[^20]Eic $1 y_{2} 1$
known as Intellectual Arithmetic, by Induction and Analysis: and in 1 1877 as Ray's Neu' Intellectual Arithmetie. Under this last titlo it Whas copyrighted in 1905. Ray's Eiclectic Arithmetic on the Inductive "und Aivalytic bethods of Instru.tion was first published in 1837. In 1844 it was "carnfully revisol" and called Ray's Arithmetic. of art Third, and in 1857 it was agnin revised and called Practical fithmetic by Induction and Amalysis. In $15 \pi \mathrm{it}$ it berame Ray's Nine Practical Artithmetic. In. 1579, a two-boots seriow was issued. Ray's Vew Elementary Arithmetic and Rays Naw I'ractical Arithmetac. This series was roviser' in 1903 and the word" new" changed to "Mnodern." Roy's Higher Arithmetic was published in hest, the year after Dr. Ray's death. The taxt, was completed and edited by Prof. Chatles A. Mathews. It was revised and called Rays Nu Higher Arithmetic in 1880 .
Of all the texts of this period. the stries by Joseph Ray has enjoyed the most extended and continued use. Ray's arithmetics bocame popular soon after their first publieation in 1×3.4, and it seoms that their popularity incerased rapully for a number of vears. Until within tho last quarter of a cemoury, nurithmetics were published which supplanted them except locally. Even now (1913), after more than a decade which has been characterized by texts of another tye, they are still a widely used serios of arithmethes. Tho iverage fearly sula for the hast teu years las been approximetely 250,000 ropies.
J. M. (ireenwood sums up his estimate of Joseph Ray und his work in these words:

 eelf-made mathematiscian and a self-made leacher Hehad hearned well the lemon of seli-help, and in the proquration of his bemike he alvay kept lefore himanelf all the dithentioes be had experienced in mantering earli topic. No otie knew betur juat Fhen and where and how to bear down on certain painta. In an winent degnee be preverated that rare combination of awinulation and dear prexemtation. He knew how to make the subjertis atjok.'.

Benjamincireenceaf"s (1786 1864) lirst beok, the National Arithmetic; Combinang the A malytic aidd symbtic M, thods, was published in 1835. Groenwood says: "It soon became it favorite treatiso with tearehers who preferred sound .thammonts in this science. The first edition wasexhausted within a yeur.'s It was ruvised in 1836, 1847, and 1857, but the "general plan of the work way never changed." In 1836 it wha amounced as "Forming a colnplete mercantile arithmetic, designed for schools and quademies." The edition of 1857 has the title, The National Arithmetic, on the Inductive System, combining
the. Analytic and Synthetic Methods; Forming a Complete Course of

Higher Arithmetic. The Common sichool Arithmetic or Introduction to the Vational Arithmetic, was dirst published in 1842 and revised in 1848 and 1856 . It is modeled closedy after the Nutiomal Arithmatio
 and revis of in 1s.ar and 1×63. The l'mamy Arithometio was fitst published in 1550 and was revised in 1NGit
 Bories, and lomformity Arithmetual Bothe The former consist

 mon Schoml Arithmetic: and (irambats Selmand Arithmetic.

 in Vimbers. (Iral and liritten, 1sx1: Manual of luthectul Avith metie, 1sit: Prief course in Arithmetie, 1ssi: and liew Pructical Arithmetir. 1506.

 Course in Arithmetir.
 cizes the stistem of arthmetie propesed he Cillomes.

He ulso finds if necessay to exphan why he retams surh topios as practioe, prorresions, position. permutations. ate, "which some
 reason is:

 to be lad aside by any who wish tu berwome thorongh arichurtitians

In, a later edition he states that chiof among the " many improve ments on former edityns" are "rlearer definitions, more rigid analyses, and briefer and more accurate rules."

James Bates Thomson (180:3-1883) wrote a series of arithmetics which were among the most popular during the middle of the century. Tlife books of the series were: Practical A解hmptir, 1×45; Mental Arithmetic, 1846; Migher Arithmetic, 1847; Table Booh, 1848:

Rudiments of Arithmetic, 1852; and Arithnetical A nalysis, 1854. In aldition there was a fommercial Arithmatic, in 1884 . The Practical Irithmetic is described by Greenwood as being "one of the best. atithmetios exer offered to the publie." All of the texts passed through maty editions. It was stated in 1655 that 100,000 copies of 'Themson's arthmetiond works wore circulated ammally. A new
 - Writhmetic. and Han ('mpletr (iruded Arithmetic. Oral and Wriaten. was prepared hy Mr. Thomson and pabheshed in 1sse.g just prior to h心 death.
 atul we are tehd " that up to latio. 1 , sem,000 cophos fof his arithme-

Ther duraile Matal Withmetic, 1 Nt9, was desigmed to be an introdartion to the dimerican Intelloctual Arithemetic which was pubhathel the same var. 'The fist was revesed in 10.57 amd the later in Sliti. But thes revisions were made "without any changes which mithi interfere with its use in the same chases with previous edilims." 'There was another revision of the American Intellectual
 luthloctult Arithmetic and the book romtains much now mattor.
 'ame the Rear Praticel Arithemetir. Abuther revisinn was made in Six. His arithmotionl arries alsw imeluded Pictorial Primary
 Bhowh Arithmetic. Intis: hend!l liechoner, 1s.1: Philosophical Arithmithic. 1sinis.

Stoddard partionarly emphasized mental or intellectual arithmetic. Ite susis m the prefter of the Imerion: Intillectual Ariththeric. Ahtad Intiot:

 the higher mathemation with ereater ease, can werarcely admit of adombt.
(ireormond says of the New Intellertual Avithmetie, "This look is one of the bre hest mental arithmeties published." "The rule Which the anthor sats he this follewed is, " Tell hat one thing at a dime and then in its preper phace."
 dames Stewart Laton consists of High School Arithmetie, 1s57; I'rimary Arithmetic, rsti0; Common Schoot Arithmetic, 186.3; Intellec$t_{\text {ual }}$ Arithmetie, 1864; Elements of Arithmetic, 1863. In 1879 Eaton's arithmetics were revised by W, F. Bradbury and published under the titles, Bradbury's Baton's Alementary Arilhmetic, in 'two
parts, and Bradbury's Eaton's Practical Arithmetic. The Commun School Arithmetic was advertised as being in print in lom:. I have.
 1857, which has this contphete title, " A Preatis" on Arithmetic', 'ombining Andysis and Synthosis. Adapted to the Best Mode of I 1 . struction in Common Schools and Academies " Laton dexathes well this text when he sels in the preface:

The Primary Arithmeise is inamdsomely alhatrated. Cireenhored says of the browk:

 mentary inatrurtion'

 tical and desighed to meet the wants of the higher gradee of and mon and grammar schomls. In the Intellectond Arahmetic. Fatont attempts to build upen the Pestaluzeian methyid. Inthe preface ha says:
 unverally approved by intelligent tachers. The firt athmpt in this cumbery 1.

 perience.
 physical objecto-have been largely employent in treating of call hyin, we the outy fit preparation for the exercisew upon abstran numbers, which are far morn dithenit for the youthful mind to grarf)

In this text the addition facts are in this form, "Two quid one are how many?' and the general organization of the book is similar to that of Colburn's First. Lessons.
I Up. dt., p.

Horotio 1. Robrinam (1 Bob-i887) seems to have been a mathomationd genius. At the age of 10 he made the ustromomional caler-- hatoms fur an ahmane. At the age of 19 he hecame professor of mathematics in the Naval Academy wheh phere he filled for lo wars

 "rind giver tha followng lest:

 which bean the same coppright dates.

 the surfes consisted of be hater

Dand W. Fish msisted Mr. Robinoun in the proparatom of has texts, particulaty in the revisions. In lases lobh phblehed a two-
 belonged to tha Rohiman seribs, and they were of the same general w?
 shla:

One of the moet inportant and, it is though, one of the bant crigital and uneful
 the ressult of long experience in the schuolriom.

```
19f cli, pros.
```

In the preface to the Pmgreasive Practical Arithmetic'he states that his purpose has beelu-
to proent the subject of arithmetic to the pupil movenasejence thin an art: to tearh binn wethode of dought, how to mawn, rather than what to do. to give unity. serem, and practiral utility to tho scieare und art of computation:

- These statements are desoriptive of Robinson's arithmetics.
kiluard Brooks is another arithmetician whow original texte were adapted to conditions without ridy much change and appar in several forms. Originally the serits consisted of Normal I'rimary. Arithmetic, 1859: Normal Mental Arithmatir, 1858; Nammal E7ementary Written Arithmetic; Normal Written Arithmetic, 1863: This serise wan revised about 1875 and bevame Nan Numal Primary Arithmefia, - Nesp Normal Elemeniary Arithnutic, Netw Numbal Mcntal Arithmetic, New Normal Fritten Arithmetic. In 1878 in the Nurmal lnion Leries oral arithmetic wes united with writhan arithmetie. This appeare to hava bern done to sativfy popular demand, and Mr. Brosks himself was undecided as to which was the betterplan. After discussing the advantages and disadvantages of a upion serios, he says.

What will be the final adjustment of this matter it is difficult ta dovide. The present tondency for combination is an examplo of history reprating itedt. Sixus after the mothod of arithmetical analyais, now tanght in mental aribhmetle, was fire sented, several authors published toxtboke combining mental and written exen iowe. among whom mey be montioned Emerson and Howeell C. Suith. Thae bxoke were very popular for a while, but the public terto changed, and the two aubjecta breame aeparated, and mental arithmetic took its place alongaide of writian arithmusar, aud hes maintained it for many years." At present thero is a demand for the combination of the two in one book. "Whouher this demand will be parmament or, like a bew fakion, will change again in a few yeara, time alone can deride.' .

- Mr. Brooks published another seriew, Nurmal Rudiments of Arishmetic, and Normal Standand A rithmetic. These arondrertised as "two entirely new books embodying Dr. Brooks's lifetime experiences in common-school work." Brouks's . Nurmal Iligher Aritlimetic, 1837, was designed "to make the student a mastor of the theory of arithmotic." In addition Mr. Brooks wrobe Mathods of Teaching Arithmetic and Philosophy of Arithmetic. The former was printed with the Key to. Inion Arithmetic, and portions of it were reprinted in histexts. Brookn's arithmetice are still published (1012) by'Christopher Sower (O ,

Brooks's conception of arithmetic was essentially the same as that of the authors we have mentioned in the preceding pages. Arithmetirt was primarily a science whose function was to discipline the pupil, and was best accomplished by making the suljou logical, concise, and screntific.

Other Important Arithmetics. ${ }^{\text {- - The first four texts we shall mention - }-2 \text { - }}$ were published in the decade immediately following 1821. Their

"For a conplate lit of the texte of this period ses J. M. Oreenwood and Artomes Martin; "Notes on the

authors atated explicity, either in the preface or the title, that the text was based upion Pestalozzian pringiples.

- William E3. Fowle. The child's Arithmelic or the Elements of Calculation in the Fprit of J'elaluzai'i Method, for the l'we of 'hildren betwoen the agie of Three and Neren Y'eurs, 18 s 6.
 Mental Arithmetic in combinal with the use of tho alate; contuining a completo sotem for all practical purpoes; being in dollam and cents; 1822°

Martin Ruter, The Juvenile Arithmetir and Ncholar's Guide; wherein Theory and Irwetice arecombinel and adaptod to the crapacities of Xoung liagintwre: conatainimy a due proporion of ewmples in Foateral Money: , and thie whole being illuatrated by Sumernur Qugetions aimilar to thow of I'metalosei, 1827 .

Jance Ryan, The Pewtalozeian System of Arithmetic, $15^{\circ} 29$.
Adams's New Arithmetic, by Dmiel Adams, nuthor of the'Scholar's Arithnntic, was pubtished in 18:27. It is describut on the title page as hering a text "in which the principles of operating by numbers are analyienlly explained and synthetically applied; thys mombining the advantages to be derivisl from hoth the inductive and synthetio moders of ipstructing."

Tho Seto Fideral ralculatur, hy Thomai T. Smiley, 1828. in ditioribed as heing ${ }^{i}$ in appeazance a cwinn to Daboll's Arithmetice." It pasiod through severul aditions and was still printed in 1890 by J. I'. Lippincotit © Co. The extended use of this bext shows an dement of conservatism.

E'lementary 'essoms in Infellectual Arithmetic; by Jamex Robinson, 1s30, was dexigneal an an "introdnction to Colburn's First Lassons and wher arghmetion." The number facte are presented objeotively.

Peter P'arley's Methowl of Teaching Arithmetic, by'S. G. Goodriah, 1s33, is an interesting primary arithmetic.

Giworge Porkins published Hưher Arithmetic, 1841 ; Primary Arithmetic; 1850; and I'ructical Arithmetic, 1851. Ceorgo P. Quackenbes builhed upon the texte by Perkins in 188.3 and following. Muny of the problems in the Prartical Arithmetic are mado up of important statistios and valuable facts in history and philosophy.
A series of arithmetiis was published by Horace Megn and Pliney E. Chase: Elements of Arithmetic, Part First and Part Second, 1850 ; and Arithmetic Practically Applied, 1850 . In addition Mr. Chase publisherl the following under his own name: The Good Scholar Easy Lessuns in Arithmetic, 1845 ; the Elements of Arithmetic, 1844; and Common'School Arithmetic, 1848. The last two of these are specified as being "on the plan of l'patalozzi," and the serist is sometimes called a Peaialozzian s ries:
George A. Walton, assisted by Electå N. L. Walton, published a series of arithmetics in the sixties. Later in 1878 and 1884 George A. Walton with Edwin P. Seaver wrote the Franklin Arithmetics, which

104

aftheraent as \triangle SOHOOL, subizot.
embody Peatalozrian ideas. A feature of both these series of arithmetics is the provision for drill. A separate book, Arithmetical Problems, 1872, by George A. Walton, contains over 12,000 problems for drill.
A series by S. A. Felter was first published in the years from 1882 to 1877. A prominent feature is the provision for drill. \&

The content and.organization of the texts.-The series of arithmetics by Joseph Lay has probably been the most popular and the most extensively used texts of this period. The series is also the mont representative of the content and organization of the texts of this period. In the following description we shall follow Ray's arithmetics, quoting from othem only to emphasize a trait or to show the presence of a tendency which later modified the subject.

Primary arithmetic.-Warren Colburn intended his First Leessons to be a first text for a pupil, but it.seems that, despite the very simple beginining, pupils found the book very difficult. ${ }^{1}$

The Child's Arithmetic, by W. B. Fowle, 1826, is a little volunie of 104 pages. He states in the preface "that this manual is prepared in the spirit of Pestalozzi's method, and is intended as an introduction to the more advanced work of Colburn, which has wrought such a revolution in our own schools." The book is in three parts. The first has to do with numbers from 1 to 10 , the second with numbers 10 to 20 , and the third from 20 to 100 . The first leasons contain explicit instructions for teaching ohildren to count by using objocts. They are taught to count out many of the number fants before they are given any practical examples. The practical examples are very similar to the simpler ones in Colburn's First Lessons. The book is a teacher's manual rather than a pupil's text. The plan is for the teacher to take the initiative; the pupil is to do what he is told to do. On the whole the book possesses no distinctive merit.
Emerson's North American Arithmetic, Part First, 1829, was a text in which "illustrations by the use of cute" is made a very conspicuous feature in an attempt to exemplify the object teaching of Pestalozzi. Pictures of various objeota are used-apples, cherries, trees, pears, hats, lamps, houses, horses, ohairs, fishhooks, pins, etc. In many cases simply marks or stars are used. All concrete problems in the book, except miscellaneous problems, are graphically represented. Not all of the number facts are developed in this way, but such as are, always procede the formal statement and drill. This makee the form of the book inductive, although it is not noticeably 80 in spirit. The Hindu numerals are introduced in the very beginning': and are used/in stating the problems. The pages of the book are attusactive in-appearance and doubtless appealed to the child. On:the whole it is a primary arithmetic of considerable merit.
? Cutiton Johpron, OVd THme Boboole and Bchool Booky, p. 37.

The relation of this text to Pestalozai is given by Emersom in the preface. He says:
The plan of the lossone accords with the method of instruction practiced in the school at Stanz, by the celebrated Peetalozzi. The method of illustration, hy the uee of ruts, and the location of unit marks under the question, it is hoped, will be found to he an improvement.
The book was evidently designed to be used before a pupil commenced such a book as Colburn's First Tesons, since it was introduced immediately into the Boston schools, apparently without dispiacing the First Lessons which was then in use.
Peter Parley's Arithmetic is a quaint little volume. Its leesons are' "Abont dogs," "About soldiers," "About money," "'About a baker's shon." etc. Each lesson is headed by an appropriate picture. The following lexson, "About a cat and her kittens," is typical:
Here is a cat with four kittons. She has been out in the field where ahe has caught a bird; this she has brought home and given to the kittens. She has also caught it mouse, and one of the kittens is playing with it. Pumis a aly creature, and she kille a great many litue birds and mice. Her foot is so soft that ahe can walk without noise, and her eye is so formed that she can see as well in the night as in the day. When all my little readers are asleep, she steals forth into the meadow or the wood, and woe to the mouse or bird that falls in her way.

1. If 1 cat killa 2 hirde in a day, how many will 3 cata kill* 4? 5 ? 6 ?
2. If 5 kittons cat 2 mico in a day, how many will 10 kittens cat?
3. If a cat divides 4 birds between 2 kittons, how many will each kitton have?
4. If a cat kills 3 birds in a week, how many will she kill in 2 weeks? 3 weeke? 5 weeks? 5 weeks? \&
5. If a cat kills 7 birds and mice in a week, how many will she kill in 14 days? 4 days? 4 days? \&c.
6. If one cat kills 5 mice in a week, another 3 , another 7 , another 4 , and another 2 , bow many do they all kill?
7. If 4 kittens have devoured 18 mice and 12 birds in a month, how many has each devoured?
8. If there are 21 mice in a houme, and a cat kills 17 of them, how many are left?
9. If there are 18 mice in a barn, out of which a weasel kills 7 and a cat 11 , how many are left?

In Elementary Lessons in Intellequal Arithmetic, by James Robinson, 1830, the illustrations consist of a figure 1 placed in small squares. These "are designed to be used as counters, in performing practical questions." Every fundamental number fact is illustrated in this manner.
A little later the primary texts came to conform to a rather fixed type which embodied many of Colburn's ideas. The problems were very simple and about things from the pupil's life. They were to be solved by means of objects and in the mind. There were no rules or, definitions. Usually the texts were illustrated by means of cuts. Ray's Arithmetic, Part First, was advertised in 1843 as containing "very simple lessons for little learners, illustrated with amusing pictures; dis cats, dogs, rabbita, boys, girlis; oto." In another plice
reference is made to it being "illustrated with about 1,000 pleasing piotorial counters." The content of these primary texts sometimes included some of the more common and simple tables of denominate numbers. Durtug the latter part of this period their content was increased, and they were made more formal. Illtstration by cuts disappeared. In Ray's New Primary Arithmetic, 1877, there are only four pictures to illustrate the problems of the text, and all the tables of denominate numbers are given except those obsolete. Pieco-meal treatunent of the fundamental number facts was the characteristic feature of the general organization. For instance, in multiplication an antire "lesson" was devoted to the table of two's, another to the three's, etc.

Mental arithmetic.-Colburn's First. Lessons was the pinneer in this field. The mental, or intellectual, arithmetics by other authors were patterned closely after this prototype. The oral arithmetic of Part Second of Emerson's North American Arithmetics is commensurate with the First Lessons and we find much similarity. The main differences are: Hindu numerals are used from the beginning, the traditional order of topics is followed, and some use is made of pictured objects for illustration, especially in the presentation of fractions. The book is inductive in form as well as in spirit, being very similar to Colburn's in this respect. As in the case of the First Lessons, a number relation is given first in a practical problem and is followed by the same combination in abatracted form. For example:

1. A lady divided 15 peachee among some little girls, giving 3 to each girl. How many girle were there?
Solution. As many timee as 3 peachee are contained in 15 peaches, so many girls were there.
2. If you had 16 cents to lay out in pencils, and the price of the pencils was 4 cents apiece, how many could you buy for all the money?
3. How many times is 4 contained in 16 ?
4. If 4 horeegeare required to draw one wagon, how many wagone might be drawn by 20 horeen?
5. How many times 4 in 20? How many are 5 times 4?

What became Ray's Arithmetic, Part Second, was first published in 1834 under the title, The Little Arithmetic; Elementary Lessons in Intellectual Arithmetic on the Analytic and Inductive Method of Instruction. In the preface, dated March 1, 1834, he acknowledges his indebtedness to Pestalozzian influences by saying:

So far an the plan of the work is concerned, we make few pretensions to originality; We tread in the footesteps of Pestalozzi, and shall rejoice if this work should be the means of making mote extenaively known the principles of the analytic and inductive method of initruction.

The book begins with numeration, and the numbers 1 to 10 are represented pictorially by means of applee. The Hindu numerals are given along with thair namge. The numbers up to 100 are given
before addition, but it is suggested that the numbers from 51 to 100 "may be omitted until the pupil has mi. de some progress in"addition." A table of 100 "stars arranged in the form of a square is used in teaching the pupils to count. They "may also be used as counters, though the fingers are generally to be "prefsrred." Addition is begun with such examples as:

> James had one apple and his brother gave him one more. How many had he?
> Then 1 and 1 are how many?
> James had two apples and his brother gave him one more. How many had he?
> Then 2 and 1 are how many?

There are 25 more questions of this type, and the suggestion is made that the teacher make up many more. The additinn tables are then given and are followed by 5 pages of abstract drill and 14 practical problems. The section is closed with a statament of the definition of addition in question and answer form.

Subtraction, multiplication, and division are presented in the same general way. Fractions are introduced with the suggestion that "for illustration, the teacher should be provided with a number of apples." Halres and fourths are pictured as parts of applea, and the first problems are concerning apples. In the following lessons the teacher is advised to use other illustrative materials. The first lesson on fractions is made up of questions such as, "If you divide an apple into four equal parts, what is one part called? What are two pary called? How many fourths in one apple? In two apples? Ph three apples?" "How many fourths in one apple and one-fourth of an apple?" The next lesson takes up in order the fractions from halves to tenths in this manzer.

[^21]fourth of what number p ". "What is 2 -thirds of $12 q$ " " 4 -ffiths of 25 are how many times 69 " 1 Theee operations are; in general, introduced by practical examples. Abstract examples ane then given for drill, and more practical examples for application. At the end 59 miscollaneous problems are given.

The last section of the text is devoted to the tables of Federal money, dry measure, wine measure, Troy weight, apothecaries' weight, avoirdupois weight, long measure, cloth measure, square measure, measure of time, and sterling money. The plan of treatment is first the table and then questions for drill. Most of these are in the form, "How many quarts in 1 peck? 28 3i 4 "" Only a few of the questions approach prattical problens.
In 1843 the Little Arithnetic wais revised and enlarged and was published under the title "Ray's Arithmetic, Part Serond." The first 54 pages are identical with the first 57 pages ${ }^{2}$ of the Little Arithmetic except that the first problems in addition, subtraction, multiplication, and division are illustrated by small circles. Beginning on page 55, fractions are presented again more formally, but the author still retains much of the form and spirit of the earlier pages. The fractions are represented by dividing a "yard of tapr," Pages 97 to 144 are given to "Practical Arithmetie." This includes notation and numeration up to nine places, the four operations for integers, reduction, and the four operations for denominate numbers, simple proportion, or the rule of three, and simple interext. In general, the presentation is formal, a single practical problem followed by the definition, explanation of the solution, statement of the rule, and abstract exercises for drill. Practical problems as applications are placed last.
In 1857 Ray's Arithmetic, Part Serond, had the title, "Intellectual Arithmetic by Induction and Analysis." The important changes are "appropriate models of analysis and frequent reviews," the introduction of percentage, gain and loss, interest, and their applications, and the addition of a number of difficult problems. The "appropriate models of analysis" are given following the first problem of a lesson and again when a new type of problem is encountered; There is a tendency to place the abstract work before the pracicicul problems. This is particularly true in the topics which havi: been added.
The edition of 1877 contains few significant changes. Objective illustrations are omitted. The presentation of fractions is more formal, the definition being given first and the logical onder is approached. The space given to percentage and its applications is increased.

[^22]The content of the mental arithmetica followed very closely that: of Colburn's First Lessons. The four operations for integers and for rulgar fractions, a few of the most important tables of denominate numbers, percentage, and interest would serve well as a i tabla of crentents for any mental arithmetic. The only change necasary would be in the ordor and emphasis.
The topics, as in the case of Ray's text, are presented in very much the same fashion as in the First Lessons. Each is introduced hy practical problems, which are followed by abstract ones for drill. This order is almost invarisbly retained, even in revised editions and texts published well toward the close of this period. The plan of following a practical problem by the same combination with abstract numbers was not followed except during the active period, and the number of abstract drill exercises were relatively less during the static period. Much space was given to review questions, miscellaneous problems, and promiscuous axamples. This was an evident attempt to secure thoroughness.
The practical problems are essentially of the same quality as those in Colburn's text. In fact, those of some of the texts bear a very close resemblance to those of the First Lessons. Toward the clase of the period there is a noticeable incrase in the difficulty of the problems. They were made more difficult in two ways: First, the magnitude of the quantities was made greater; second, the problems themselves weie made intricate. The extent to whichthis was carried is shown in the following problems selected from Ray's Infellectual Arithmetic, one thousandth edition, 1860:
A hare is 100 leaps before a hound and takees 5 leapn while the hound takee 3, but 3 leape of the hound equal 10 of the hare; how many leapet must the hound take to catch the hare?
A trout's head if 4 in . long, ite tail is as long as its head and \ddagger of its body, the body is as long as ite lead ant tail; what is its length?
If 10 gal . of water per hr. rum into a veseel containing 15 gal . and 17 gal . run out in 2 hr ., how long will the vessel be in filling?
A. B, and C rent a pasture for \$92. A puts in 4 harses for 2 mon., B θ cows for 3 mon., and 020 sheep for 5 mon. What should each pay, if 2 horsee eat much mos 3 cows and 3 cows eat as mutch as 10 sheep?
If the intereat for 1 yoar 4 mon. is $3 / 25$ of the principal, what is the intereet of $\$ 100$ for 1 yr., 8 mon., 18 da.?
The number and difficulty of such problems variod with the author. Ray probably represents an average, certainly not less than an average. Texts containing difficult problems seem to have boen demanded, particularly in the latter part of this period. In his New Mental Arithmetic,' 1873, Brooks gives a large number of probleins which are nothing more than intricate puzzles. He classifies them under such heads as pasture problems, beggar and equal number problems, animal problems, working problems, labor and fish problems, age and step problems, etc..

Practical arithmetic.-The texts which are grouped under this head included all the topics of arithmetic which were studied in the elementary school. They began with numeration and notation. and addition, sybtraction, etc., came in turn. In scope ther were the descendants of such texte as those of Dilworth, Daboll, and Adams. The study of "practical arithmetic" paralleled that of "mental arithnetic."

- Colburn applied his ideas of arithmetic, particularly the inductive mothod, to this field and, as we kave shown, produced a text of high merit. But the Sequel was not well received, and after a few years dropped out of notice. The book embodied some features, such as the entire departure from the traditionad division of subject matter and the order of topics, which were too progressive for the times. Furthermore, the book had to compete with contemporary texts and texts which were already in use. This was not true of the First Lessons, for it was a pioncer in a uew field. Thas Colburn probably influenced only very slightly this field of arithmetic directly through the Sequel. However, the work of Colburn did change the texts in practical arithmetic. The source of this influence was primarily the First Lessons. The principles underlying this text were accepted, and other writers, like Colburn, attempted to apply them in part to the more adranced texts.

We have described the holar's Arithmetic by lymiel Adams. In 1827, he says in the preface of Adanis's New Arithmetic:

The Scholar's Arithmetic, pullished in 1801, is synthetic. If that is a fault of the work, it is a fault of the timee in which it appeared. The analytic or inductive method of teaching, as now applied to elementary instruction, is among the improvements of later years. Ita intreduction is ascribed to Peetalozzi, a distinguishod teacher in Switzerland. It has been applied to arithmetic, with great ingenuity, by Mr. Colburn, in our country.
The analytic is unquestionably the best method of acquiring knowledge; the synthetic is the best method of recapitulating, or reviewing it. In a treatime designed for school education both methods are useful. Such is the plan of tho present undertaking, which the author, occupied as he is with other objects and purswits, would willingly have forborne, but that, the demand for the Scholar's Arithmetic atill continuing, an obligation, incurred by long-continued and extended patronagen did not allow him to deeline the labor of the revisal, which should adapt it to the preeent more enlightened views of teachitg this science in our schools. In doing this, however, it has been necessary to make a new work.

- Division is introduced with the problem, "James divided 12 apples among 4 boys; how many did he give each boy?" After 20 problems of this sort, the problem, "How many ioranges, at 3 cents each, may be bought for 12 cents?" is solved by successive subtractions. The pupil is then told, "We niay come to the same result by a process, in most cases much shorter, called Division." The process of division is explained by solving this problem, and the now words are defined. The division table is given, and after the
problem, "How many yards of cloth, at 4 dollars a yard, can he bought for 856 dollars 9 " is solved and explained, the rule is stated for the case when the divisor does not exceed 12. The rule for the case when the divisor excecds 12 is derived in the same manner.

A comparison of this presentation of division with the way in which such topics were presented in the texts of the preceding period indicates the extent of Colburn's influence upen the "practical arithmetics." The inductive method was accepted with only slight reservation, and Adams seems to have caught something of the spirit of it, as well as the form.
Roswell C. Smith, whose arithmetic was first published in 1827, says in a rather bombasitic preface in the third edition, 1834 : ${ }^{-}$
Another inquiry may otill be made: Is this edition different from the preceding? The anower is, Yee, in many rewpects. The present edition profeece to be atrictly on the Pewtalozzian, or inductive, plan of leaching. This, bowever, is not claimed an a novelty. In this rempert, it rewomblew many other rystems. The novelty of this work will be found to consist in adhering mone cloem to the true apirit of the Pestalozzian plan; consequently, in differing from other aystems, it differs lees from Pewtalozzian. This aimilarity will now be shown.
The author atampts to combine ocal and written arithmetic. Certain features of the oral part of the text almost duplicate Colmirn's First Lessons both in actual content and spirit. For example, smith begins his text with:

1. How many'littla fingera have you on your right band" How man; on your left? How many on ixith?
2. How many eyers have you?
3. If you have two apples in one hand, and ne in the other, how many have you in both? How many are two and onf, then, put tumether")
4. How many do your gars and eyes make, counted tomether?
5. If you have two nuts in one band, and two in the other, how many have you in inth? How mauy do two and two make, put together'?

The llindu numerals are introduced on page 2 and the addition tables are given on pages 3 and 4. Aside from a dist of 24 problems, there is no work preceding the tables, and these problems do not constitute a development of the addition facts. Following the table, there is only a page of drill. The remaining three operations are disposed of in the same manner. This completes the "mentul exercises. ' Beginning on page 17 we find the traditional order of topics, numeration and notation, addition, ete. The fundamental operations are introduced by, a list of practical problems to be solved mentally. The "interrogative system"' is used throughout the work in presenting rules and explanation. The author did this under the impression that it was the mark of inductive presentation, but nevertheless the subjeot is presented quite dogmatically. For the most part the spirit of the book is deductive rather than inductive.

[^23] apt. Therefore this fecture is not neosemaily due to Pentaloezi.

118:

In presenting a new process, e. g., long division, one problem is solved and explained, after which the rule is stated.
The text, whilosit possesses some merit and must he considernd one of the progreasive texts o. its time, does not reflect much of Peatalozzian principles and does not equal Colburn's texts in this respect.
The plan of the written arithmetic of Emernon's North American Arithmatic, Part Second, is much like the orat part. But the st ructire of the trook is more formal, objoctive illustration is lessened, and the inductive method, although retained, has lost much of its spirit. The point of departure in taking up a new process is not always a concrete problem, and the development is forced. For example, in division:

Here we must fimi hop many time 3 dollara lhere are in sotidollare: that in, we must
 the 6 unite; thus, 3 in 3 , onfer: 3 in 9,3 timew; 3 in $t, 2$ times

Oheerve, iti the abowe example, that the ? whidh we firmt divide means 3 hundre! and the 1 "which we nlace under it meane ifundred, showing that 3 is containexi in 300, 100 times. The 9 meanm 9 tesm, and the 3 whirh wo place inder it mewna 3 tena. showing that 3 is contained in 90,30 times.
 example. A thiteor is a mumber hy which we livide: such as the number 3 in tho above example. The quoticut is the number of limes which the dierisor is montainel in the dividend; nuch as the number 132 in the above example

Long division comes four pages later. The iopic is introduced nes follows:

The methad of dividing taught in the two preceing seetions is called short diyision. the methim taught in this eection is called long division. In long division we place the quatient on the right hand of the dividend, and perform the same operations under the dividiond, heretotore performed in the mind
4) 98307 (33826 How many timen is 4 rontained in 95337 ?

	P
	multiply the diviorr hy 2 , and euhtract the praxurt (8) from 4 .
	in the name as maying in ehort divisivin, "4 in 9,2 immee and ! ova
${ }^{33}$	Now, since the 1 over muat be joined with the 5 , we bring down the 5 to the right of the 1; and then, perceiviug that 4 contained in 15
	${ }^{\infty}$, wo place 3 in the quotient,
10	truct the product as hefore. Thus we proceed to bring down every

$\frac{37}{24}$
$-\frac{4}{3}$

Additional difficulties encountered in division are explained in the same manner, which is essentially only a detailed rule stated for a particular example. After 24 examples, all abstract, the general ${ }^{\text {a }}$

rule is stated. (Compare this with Colburn's presentation of division: page 74.)

Although Emerson presents percentage and interast as distinet topies, his freatment resembles that of Colhurn in the Sequel. In the case of Interest, the rule is stated for the simple case preceding the fint prahlems and the additional rules are given as needed, sometimes even being given after the first problem which demands them. On the whole, Part Secobd is a text of considerathe merit, although in indurtive trastment. coneroteness, and motive it, is inferior to Colburn's toxt.

The text which came to be known as Ray's Practical Arithmetic begins with an introduction of 39 pages devoted to definitions, numeration, and notation. It is suggested that "pupils in general need not be required to stady the introduction until going through the book the second time." Addition begins with:
If you find 2 cents at one time and 3 at another, how many will you have?
If you give 12 centa for a slate and 5 centa for a copy lxak, how much will they both coul?
Johngave 6 cema for an orange. it centa fur pencila, and 9 cente for a bull: what did they all iont?
After several problems of this sort the pupil is tohd that --
the putting tigether of two or mone numberw of the ame name or denomination, no as to make one mamber (as in the preceding exampler, it called aditition. The bumbur fonned by miding tagether two or nore numbers is called the aum ur mount
The tables are then giren, and following is this development of the rule:

James had 83 cents and his father gave him 35 more: how many cents hat he then? These numbers being too large to he added convenienty in the mind, it beromes necesary to write them down, and in doing this it is uecesary to put the units of one number under the units of the other, and the teus of one number under the tens of the wher, to enable us more eavily to aidd tugether figures of the name lucal value.

Having written the numbera in this manner and drawn a line
63 centa undemeath, we luxin at the right hand and add the 5 units of the
35 conts lower number to the 3 unita of the upper muniter, which makea 8
Ans. 98 cents units; we write this in units' place, and then add the 3 tens of the Nower number to the 6 tens of the upper number, which makes 9 tens to be sat down in tors, place and the work is completed, and the sum of 63 centa and 35 cents is 98 rents.

Jagees bought an eclectic reader for 72 cents, an arithmetic for 37 centa, and a slate for 9 canta; how much did they all come to?
E. reader, 72 cents In writing this example we put the 9 under the 7 unita' in Arithmetic, 37 cents place, for if put under the 3 in tens' place it would count θ Slate, $\quad\{$ cents tens, or 90 cents.

Ans. 118 cents We begin at the right-hand column and say 9 (units) and 7 (units) are 10 (units), and 2 (units) are 18 (units), which in 1 "ton and 8 units; ve set down the 8 (unita) in the units' place, and carrying the 1 (ten) to tens' place, we say 1 (ton) and 9 (tens) are 4 (tans) and 7 (tons) are 11 tons; that is, 1 hundred and 1 ten, which we put in their proper places.

The rule is followed by abstract drill exarcises and then practical problems. Subtraction, multiplication, and division are similarly presented. Fractions are presented somewhat more formally, but the inductive form and much of its spirit is exhibited in theremainder of the book. The table of contents includes the four operations for simple numbers, Federal money, compound numbers, fractions, percentage and its applications, fatio and proportion (simple and compound), fellowship, alligation, equation of payments, practice, and analysis. In an appendix the following topics are presented briefy: Involution, evolution, progressions, position, permatation, exchange, duodecimals, mensuration, and boukkeeping.

Easentially the same introductory problems are found in the edition of 1857. Following these, the definitions are stated thus:
The proces of uniting two or more numbers intb one number is termed Aldition. The number obtained by addition is the Sum or Amount.
Remark. - When the numbers to be added are of the same denomination that is all cents, or all yands, etc.- the operation is called Simple Addition.

The development of the rule is as follows:

1. James had 69 cents and his father gave him 35 cents; how many cents had he then?
Place the unite and the tens of one number under the units and the tens of the other, that fgures of the same unit value may be more easily added.
Solution.-Write the numbers as in the margin; then say 5 units and 3 unitsare 8 units, which write in units place; 3 tens and 6

63 cents 35 cents

Ans. 98 cents tens are 9 tens, which write in tens' place. The sum is 9 teris and 8 units, or 98 cents.

In this example, units are added to units, and tens to tens, since only numbers of the same kind-that is, having the same unit value-can be added. Thus, 3 unita and 2 tens make neither 5 units nor 5 tens; as, 3 apples and 2 plums are neither 5 apples nor 5 plums.

This is followed by a second example and its solution, and then a few "questions to be solved as above." Carrying is avoided in these examples and is takea up on the next page, after which the rule is stated.

A compariso. of this presentation of addition with that in the first edition (1837) shows the extent of the formalization of the inductive method which was attained in Ray's Practical Arithmetic by 1857. The form is retained in part, but the spirit of it is almost entirely lost. In the derivation of the rule the pupil is simply told what to do. It differs only in form from the method of presentation found in Adams' Seholar's Arithmetic (1801).
In the hext revised edition, 1877, there is one additional introductory problem, and the definitions are stated more formally. Only two problems are solved preceding the statement of the rule, as against four in the edition of 1857. And one of these is purely abstract. The explanation of the solutions are more abbreviated and more dognatio.

In the first edition the topics which we now inolude under the heed of percentage and its application are given in the order, simple interest (including partial payments), banking, discount, percentage (including profit and loss), commission, insurance, buying and selling stocks, exchange, duties, and taxes. Under interest, rate is introduced by the statement: "A lent B $\$ 200$ for one year; at the end of the year B paid A the $\$ 200$ which he had berrowed and also $\$ 12$ in addition for the use of the money; that is, he paid at the rate of $\$ 6$ for the use of $\$ 100$ for one year." From this, principal, interest, rate per cent, and amount are defíned. "Rate per cent moans rate per hundred; it is the sum paid for the use of one hundred dollars for one year." Later, per centage (writtep as two words) is defined as the group of "those caloulations in which reference is made to a hundred." Per cent is defined as a "contraction of per centum, which signifies by the hundred; thus when we say 5 per cent, we mean 5 dollars on 100 dollars, or 5 cents on 100 cents."

Decimal fractions are not employed in these problems. The rule "to find the per centage" is: "Multiply by the rate per' cent and divide by 100 ; the quotient will be the per centage." After the pupil has been drilled upon finding the "per centage," the application is made to profit and loss. This plan is followed for each of the three cas of percentage.
The presentation of this material is practically unohanged in the edition of 1844, but in 1857 percentage (written as one word) was first presented abstractly (Cases I and II). This is followed in order by commission, insurance, stocks, brokerage, interest, partial payments, compound interest, discount (true), bank discount, profit and loss; taxes, and duties. In presenting pereentage, the equivalent of common fractions in terms of per cents is given first. In solving the problems the rate per cent is to be expressed decimally. The symbol "\%" is used almost exclusively instead of the words "per cent." The idea of "per cent" meaning at the rate of so much on the hundred is not suggested.

In 1857, ommon fractions are preceded by sections devoted to factoring, greatest common divisor, and least common multiple. Longitude and time is made the title of a section. Aliquots, or practice, is reduced to a scant three pages, and oancellation is introduced, but Ray insists that "it is not made a hobby, or an arithmetioal machine, by which results can be obtained meraly in a mechanical manner."

A comparison of the editions of 1837 and 1877 reveals the following changes of content. The Roman notation, cancellation, and the metrio system have been added. Factoring (including heast common multiple and greatest commun divisor), complex freotions, percentage, oxchange, insurance, and taxes have been enlarged. The following topics have been omitted: Alligation medial, single position,

10 worde, and in the 10 worde, there 200 , 42 in'average, 47 lottens. Required the number of pagee, lipes, words, and bettens, contuined io the entire rork.
The entire quantity of teen eold by the East India Compeny in 1709 wee $24,859,500$ Iwuods; bow many chena, eact containiag 87 pounde, would this quantity fill?
This type of problems was not original with Kay, as such probleons are found in much earlier texte. However, during this period they berame more provalent. Occaxionally an author exhibited extmine iemencies. For instance in the Franklin Arithmetir, 1832. surh problems as the following are foumt:
How many letiem in the wand Suith?
 and 157 in Phikdolphis; how many in bahy
 it be then?
Four rivers ran through the karden of Elen, ath awe through Bobjion, how anay mure ran throught Edon than Malinhimy

A human body, if beted until all moikure in evaporated, ia moduced in wright an I to i0; a bady thas weighan 100 pounde living will waigh buw much when dry?

In an arillimetic by Horsce Mann and Plines E. Chase, published in 1880 , lhis type of problem was made a fencure. Tho idea was conceived by Mr. Mann, alohough to Mr. Chase is due noost of the redit for ita exarution. In the profare of Arithmetic Practicalls Appliad. Mann aeta forth hig ideas as follows:

Buthering the ide of the work to be original, I will atempt ite chatidation. In
 wh the truttin of ecierice, and to make a melection from earh department of whelover
 the nurwery, or to the commodition of the raarket place, and to the money they will cust, ur make, or leme. On the contrary, the pereint work propowe to carry the etudent owe the wide axpane of domertic and wial employmenter to intoxtuce hims to the various depermente of human knowitedene far wa that knowledge hwe bepn mon(ontuad into tabive, or exhibited in arithmetical kummaries, and to mate bim acyusinked with many of the mowt wumerfin nwilte which urathenatical wience han
 wher change than from तollans and cente to pounds and pence, or nome other familimer cumoncy, and with little other variety than frum chath to corn, or wume other comason. phace cornmodity, it derive its exumplea from bicgraphy, geography, chonolagy, and hionory; from educational, finanaial, commerini, and civil atatioticy; from the lam of light and electricity, of ound and motion, whencoistry and astronomy, and others of
 far an they are the subject of numerical statement, and their facto ponene ariurmetical relations, together with all the ascortained and detgrminate resulta of economical ar - political knowledge, and of ccientific discoverien, are hid under contribution, and are made tor oupply appropriate elemente for the questione on which the youthoul. tearnar-may orenciso hio arithmotical facultion.

Two 'advantages are mentioned which Mann says "seam to me unquestioneble:"

1. The pupil, while studying erithenetic for ita own make, will acquire nome knowh. edse of many othar thinge.
2. The work will appeal to more beultiee of the mind, amd bence afford opportunity for alternate use.

Greenwood says of the book:

The information composing the problems is drawn trom at least a hundred sources. It is highly instructive as well as eminently practical. A good title to the book would be "Useful and Scientific Information Trested Arithmetically." A revised. edition ought to be in the hande of every tescher. It has never been properly apprecistod, and few copies are in existence; even the publishers do not have a copy. ${ }^{1}$
Organization.-In the internal arrangement many of the texts in the active period explicitly professed to be upon the inductive plan, and we heve shown that the authors did build upon this plan with some degree of understanding of the mental process involved in induction. But it appears that about the middle of the century this understanding of the inductive plan faded or bocame overshadowed by philosophical considerations.

In the Practical Arithmetic of 1857 Ray says that the "inductive and analytic methods" are adopted. Two paragraphs later he states that "the arrangement is strietly philosophical; no principle is anticipated; the pupil is never required to perform any operation until the principle on which it is founded has first been explained." This ig a contradiction, because induction and what he definee as the "pflosophical arrangement", are fundamentally opposed. The text itself exhibits both plans of organizatior, but the spirit of the text is more in accord with the latter. In 1877 there is no reference to the "inductive and analytic methods." Ray's text does not represent an extreme in respect to this trait. Divies, Greenleaf, Brooks, Robinson, and others are more pronouncedly "philosophical.".

Higher arithmetic. - The higher arithmetics were simply an advanced treatise on the general plan of the practical arithmetics. All topics were included from notation and numeration and the fundamental operations for integers to involution and evolution and series. The topics were not introduced by a few questions to be answered orally. The organization was strictly logical, first such definitions as were necessary, then the rule followed by abstract exercises, and finally praotical problems. The subject was looked upon throughout the text primarily as a science. Emphasis was placed upon "clearer definitions, more rigid analyses, and briefer and more accurate rules." These features represent the prime merit of not only the higher arithmetics, but of the practical arithmetics as well. This is undoubtedly one of the main reasons for the long and extensive use of such texts. in our schools.
Colburn's influence upon the textbooks of this period.- Primary texts, "tmental arithmetio," the use of objective materials, and the inductive method were the most significant features of the arithmetics of

* the period. The authors of some of the texts were acquninted with Pestalozzi's system of arithmetic and his educational principles, but it is probable that all were acquainted with Colburn's texte, particularly the First Lessons, and the interest in Pestalozzi's system of arithmetic was due in a large measure to the popularity of this text. The primary texts were patterned after the First Lessons; the "mental arithmetics" followed it very closely; and the inductive method, before it was formalized, was very similar to that in Colburn's texts. The objective materials were changed only by the omisaion of the Pestalozzian tables and by adding pictures. Thus, much is due to Warren Colburn for stimulating and directing the development of American textbooks on arithmetic during this period.

8

the children are taught to write amounta from dictation. They are never allowed to copy sums, and consequently must acquire a knowledge of numeration, as usefut as it is uncommon. In addition the higheet adds the first column aloud and telle the next what to set down and what to carry; the next takee the second column, and doee the same. Anyone who correctis another goes above her, se in spelling or reading; and, as all must aid in doing the sum, the attention of all is merured. It is so with subtraction, and ail the otherrules. The higheat ectelare copher in Colburn's Sequel, and record their operations in a manumcript. ${ }^{1}$
The monitorial plan of group instruction was not generally adopted. Ray describes the practice of about 1840 as follows:
When practicable, the pupils should be arrangel in clasees, due regard being had to their ages, acquirementa, etc. After this, the proceeding in the beat schools, in somewhat as follows:
A certain number of examples is arranged as a lemon; it will, also, frequently be necusary that a part, or even the whole, of the leseon ahall consiat of the illustration of principles, or the memorizing of definitions or rulee. When the cleer meete for recitation, wach pupil pereen his alate into the hands of the pupil next above him. except the pupil at the head, who pasees his to the foot echolar. The tewcher then reads the answer to the first queation, while each pupil examines the slate he holde. 1. ree if the answer is correct and properly obtained

In addition to rearling the anewer. the teacher, in many casea, such, for example, as proportion, should atate the general mothod of working the question. The pupils mark the answers that are wrong, or obtained improperly: In the eame manner, each queation ig examined and marked: Instead of the teacher reading the answers; the pupils in succesion may read them.
When there is a blackboard (and there should be one in every schoolroom, 4 or 5 leet wide, and as long as the room will permit), each pupil should be required to work out one or more of the exgmples, and give the reasons for performing the operation. The time required tw exsmine the questions is generally ahort, while the habit of closely ecrutinizing each other's work, improves the perceptive facultien of tho pupils.?

William B. Fowle was the author of an arithmetic and for a numher of years was an instructor in tsacher's institutes in Massachusetts and Now York. In the Teacher's Institute he discusses the teaching of the common branches. The following "methods" of teaching addition are interesting as well as ypical:
When the cliildren are ciphering on the blackboand, there are various waye of keeping then at work. I will try to describe a few of them. Suppose the clame consiste of aix, and the exercise to be in addition. I first dictate one line of a sum to each pupil, as follows:

The pupile etand in a semicircle around the board, the toacher or monitor atanding on the left, the head of the clase being always on the right.
${ }^{1}$ A mer. Jour. of Edoc., 180, 1:35.
I Rey to Rey's Prectlon Aritirestio, p. 6.

122

First method.
Let the first child begin, and eay aloud," "6 and 7 are 13." Let the next child my, "and 6 are 19;" and the next, "aud 9 are 28 ;" and the next, "and 7 are 35 ." The next eete down 5 , and if the chilaren are very young, he sets a small 3 under the 5, as a guido to the next, who says, " 3 tens carried tw 8 tenis make 11 ." Then head begins again, and says, " 11 and 8 are 19;" the next says, "and 9 are 28;" the next. "and 9 are 37 ;" the next, "and 8 are 45 ;" the next, "and 6 are $5 b$;" the next sets down 1 in the tens pluce, and puta a 5 under it. The next eays, " 5 hundreds carriad to 6 hundreds make 11 hundrede:" the next says, "and 6 are 17, ," and so on until the sum is finished.'

This "method" is given several variations. Pupils may be called upon "promiscuously." Or each pupil may add a column silently. and place the result upon the board. The next is held responsible when the sum is not correct.

- These "methods" are simply types of technique for effectively focusing the attention of the class and arousing interest in the work. No fundamental principles of teaching are stated, but these specific rules for carrying on the classroom work are typical of the mothod of teaching during this period. Objective and examinable restlis were desired, and devices whirh would give these, and would socure attention, were accordingly exalted as mathods of teaching.

In teaching mental arithmetic a procedure was adopted for the purpose of forcing the ceontinuous attention of the class. As in the case of written arithmetic, the plan was an artificial decice. Stoddard gives in his Methods of Toaching the following "methods:"

First method.

The teacher reade the problems and calle upon the different members of the class promiscuously. Each pupil pamed arises, repeata, and analyzes the problem. Members of the clasa who have discovered mistakes, or who take exception to the method of analysis, raise their hands, and the teacher deeignates some one of then to make the necessary correction, or he makef it himself.
Modifications of the above method:

1. Call upon different pupils to molve different parts of the same problem, each as he in named being required to proceed with the analyais where the pupil who has just taken, his seat left it. This method furnishes an opportunity for "etirring up." or jogging the memory of the inattentivo.
2. The pupil derignited to analyze a problem arises, repeata it, and names anuther to solve it.

> Second method.

The teacher reads a problem, the clase eolves it in silence, and an rapidiy as puseith: each raises the hand on obtaining the reault.
After giving sufficient time the teacher, if he wishee a nimultaneous answer, нays "Claen," and all who can pronounce the result together. Or be namee a pupil, who arisee, gives the result, and eolves the problem.

Third method.

. The teacher reads and aecigns a problem to each member, or a part of the nembers, olthe clase without waiting for a golution. He then calle upon pupils promiscuously
who have had questions given them, and the pupil named arises, repeats, and analyzee the problen asoigned him.

This method is good diecipline for the memory
Fourth method.
Two pupils are deaiguated as chinfs, and chome alternately from among the other inembers of the clase such as they dern the best scholars in mental arithmetiofor a trial of akill. The teacher givee nut pmblems alternately and marks the failuree or the number of questions which each side solvee correctly, and at the close of the leswongive the realt. Or he cause each pupil that fails to take his seat, and the side that has the largevt number of pupils standing at the cloee of the lemoon is pranounced the beet.'

- Motivation.-The plan for securing motive which is offered by the writers on the teaching of arithmelic, whone we have quoted on the preceding pages, is by appeal to artificial incentives. The pupil attended to the example in addition because, if he did not, he knew. his failure to attend would be immediately discovered by both his classmates and the teacher. Being thus caught in the act, the penalty followed, a lowering of his rank in class, a reprimand by the teacher, or a severe punishment. Or the pupil wished to securewthe approbation of his teacher or parents. Knowing the shortconof his classmates he attended in order that he might profit by therr fuilures. As soon as the pupil reciting faltered or made an arror he whas ready to take up the solution of the problem and receive his reward in the approval of the teacher or in the anticipation of the reception which would he given at home to his report card. Or perhaps his reward came from the superior position which he had attained in the class. In putting one division of the class against the other the instinet of emulation was appealed to. Or where the class was smail the contest wasibetween the individual pupils. There was an appeal to the pupil's prido when he knew his work was to be examined and marked by another pupil.

Motive was secured in other ways. The puzzle type of problem stimulated the pupil's curiosity. Some problems were practical. The primary work and the rapid drill were immediately interesting to many. But these ways of securing motive were, for the most part, used unconsciously. When a tewecher wrote of how attention was secured these phases of motive were mentioned only incidentally or not at all. Occasionally, but usually in respect to other school subjects, motive by conflict of ideas was mentioped. David P. Page, in a text on Theory and Practice of Teaching, gives a list of good incenfives. They are: (1) Desire of the approval of parents and teachers; (2) desire of advancement; (3) desire to be useful; (4) desire.to do, right; (5) natural love it the child for acquisition and a natural desire to know.

The idea and practice of securing motive in this period wee characterized by there being no intrinsic relation between the purpose which the pupil recognized and the subject matter studied.

Problems solved according to a formula. - In mental arithmetic which was considered to be expecially suitable for developing the reasoning, the solution was accomplished by applying a syllogistic formula. Ray says i. Hints to Teachers, Intellectual Arithmetic (copyright 1860):

A method of solving questiona in moital arithmetic now much ueed is the following. called the "Four-step method:"
Illustrations.-Firse step, Jame gave 7 ceinta for applés and 8° cents for peacher; how many cente did he spend? Second step, as many as the sum of iraud 8 cente Third step, 7 cents and 8 cents are 15 cents. Fourth step, hence, if James gave 7 rentis for applea and 8 centa for peacher he apent 15 cents.
Agrin: Firat stece, 4-6ifthe of 25 are how many tines 6? 'Second step, as many times 6 as 6 is contained times in 4 -fifthe of 25 . Third slep, 1 -fifth of 25 is 5 , 4 -fifthe are 4 times 5, which are 20; 6 in 20 is contained 3 and 2 -six the times. Fourlh stip, therefore, 4 -fifthe of 25 are 3 and 2 -aix ths times 6 .
Some writers insisted that these forms of analysis were to be committed to memory. In the following quotation the author believes that a verbatim memorizing of the forms of analysis will make the pupils all the better reasoners:

Aiter the pupila are familiar with the process and have received sufficiont drill they ahould be taught to analyze probleme. The tearher should see that the analysia is thoroughly understood and acruralely recied. They should be required to write out an analysis, and the pupil that presents the most simple and concise analysis shent. write it on the board, aubject to the criticiam of the clans. See that the language is uged correctly; that it tells the " truth, the whole truth, and n^{n} "hing but the truth." Now require every member of the claws to commit the anslysis verbation as he would a demonstration in Euclid-for experience teaches that thoee pupils who are critically close in committing verbation the demonstratious in geometry make by far more accurate reasoners and ready mathematirians.'

When the pupil was furnished with a stereotypid form for the solution of every problem all opportunity for reasoning was eliminated except such $8:$ there might be in identifying the particular problem with the appropriate formula. Therefore the types of problems were mixed, to form promiscuous and miscellaneous lists of problems. Brooks says:
It will be froquently noticed that, after begiuning the lecion with the typiral problem, vartions are made both in the conditions of the question and in their application to other objecte than thoee named in the original problem. . This is done to give variety to the exercises and to afford diecipline to the pupil.
Assisting the pupil.-The assistance which the teacher romdered the pupil consisted mainly in holding him to certain fixed standards, in drilling upon what was considered fundamental, and in explaining difficult operations and problems. Little effort was made to assist the pupil to think. Developing a process or topic was not consciously
attempted. The explanations by the teacher were simply told to the pupil. Whether the pupil understood the explanation or not, he was oxpected to remember it. If the difficulty was suffici ntly important, the pupil was drilled upon the manner of orercomu. \because it. In this way the learning was largely by conscious initation, wis sufficient repetition by the pupil to fix the subjact matter in the nind. It seeflis to have been recognized that expression assasted i.. making the impression. The prominence given to the explanations in clast h. pupils was in part due to this belief.

Deductive methot.--Hia have seen how the texts of this period berame deductive in form after 1857. The instruction followed the texts closely. The "rule" was again omphasized. If the pupil was able to subsume a problem under a known rule, the rule could Whe care of the answer. A repert of the investigation of schools in Connmticut, in 1887-88, contains the following comment upon the attitude of the pupil toward the rule:
The methed in arithmetic is illustrated by the coures which moet children will take after long inatruction in such echende. If they are given a poblem of one or two stepe. they well first ser what rule it momes under. It it doeanot come uader any rule with which they are familiar, they will take a buxk and are if they can tind an example like it. to they fail in this amarith, they then begin to cipher at randon, nultiplying and diviling in the hope that it nay turn out right,'
The rules were not developed as Colburn did in his texts. The pupil was scarcely allowed to make a hypothesis when a new type "f problea was reached, and to work out a whtom of his own. Instead the rule was given to him ready made.
objective taching.-The use of objective materfals beans, grains of corn, pieces of crayon, etce, is recommended by Ray for the younger pupils. He also deseribes what he terms "arithmometer," an instrument for representing objectively the number facts of the four operathons. However, he camtions against "frequent uso of artificial aids," for it "tends to prevent the pupil iroin exercising his own intellectual powers, and thus, if carried too far, is productive of positive injury." \ln an edition of Greenleaf's primary book he says:
The Firat Leerons in Numbers has been prepared in the belief that the objeertive presentacion of numbers is beat auited to the comprehencion of the child. The teacher
 ohjecte, that from the outeret the child may have rorrext idraw of numbere. The c"prous illustrations found throughout the book are intended as aile in this direction.

Ohe writer on the teaching of arithmetic (1.577) says: "Construct. the addition tables at first by the use of objects." He adrises the same, plan for multiplication. Illustrations in the form of cuts became a feature of the primary arithmetics, but I have found none as profusely illustrated as Emerson's Part First. A few illustrations are found in the "mental" and the "practical" arithmetics, but usually only for elucidating a topic of peculiar diffeulty.

$$
\text { IConnecticut School Dncuments, No. VIf, p. } 224 .
$$

The second Pestalozzian morement in the linited $S_{i f t e s, ~ u s u a l l y ~}^{\text {a }}$ known as the Oskego movement, emphasized almmes exclusiraly objective teaching. This morement, which dates from 1860 . appens. to have had but little direct influence upon the teaching of arithmetio. There was only a slight increase in the use of objer tive materiats in arithmetic after 1860 .

Drill.-W0 have already shown that skill and thoroughame wore emphasized as ends to be attained. "They wore to be secured by drill. These gonls of ibstruetion arere given incremsed importame in the latter part of this period. Drill devices and drill cards wore given by a number of nuthors. Drill 10 make certain parts of the subject mater morhameral was insisted upon. De Graff, in Tho Ehoolroom (iuide, 1sat. surs:
 requiring pupila to revite them bakward and forward regularly and irregulatla
 of the work, berause carelew habita formed will ever the a wirce of annoyance to thith teacher apd pupil.:
د In Felter's Primary Arithmetic the teacher is advised:
In order to metre thoroughnes, give mbort lomone and epend much time in dath priew. If in the exerise of "foum," do not promed until everything that presedes is as familiar as the alphabet. If it repuired nome month, take it; if one your. the then
 - of the given cxercias tur remain in the chaes.

Some reforts upon the teashing of arithnacic.-In 1 scis-ss a committee reported upon the condition of schools in Ner landon Commy. Conn. The repert was based upon tests and visitation. In respety to arithmetic they say in part:
 oping number, but almost invariably the teachor answered the quortion as th alat
 rue not only for elementary hut for ad ranced clawere.

Monthe and terme ame apent in connting, learning to write wheardonf mumber.
 number is thought of. No concrete examplea, except the few in a amall bexk arn given. No thorough drill is attempted. No rapid handing of numbers, no accurary - with figurea, no training of the ramon, is the reault. Most sor-allexd mental examplem have been carefulty studied before the recitation. Definition and rules will lut reperaled fluently, and yet the pupil is unsble to perform aimple examplew involuitg one or two steps of reasoning. One or two illoorations are pertinent

A boy over 10 years of age was being tanght to count one hurdred, but combla ont tell the sum of two and two. The teacher gave as the reawn frr toaching him thus to count, before he cold add, that "when he received rhange at the stort her cruld count it."

In another echool, a class of three gave with great fluency the definition of 'units." "arithmetic," "counting," "ecale," "counting of," "group," etr. They read numbers up to eextillions, but could not tell hrit many fours there were in 16. The teacher said that they had never done anj cining in multiplication or division. These
-hadren had hern in achmil about four yeare $I t$ is not to tim wondered at then. that under wheh untatural methods matye children atend achon! meven and righe yare without reaching percentage and ita appitatione to interest '

I mire chathate buesigation was made of the solumpe of New
 defrits. They sum up their upintome with reperet to arithmetic in 1!n-rntontr.
$*$

 afte mad methoul as wall:
1: many district the main thing in arithmetio is the detitimbin forme sothol

 pernule The detinitmas mant he word for word as in the twoks.
The anewer th the putetion. "How is a fraction engremed"" wag given by writing

Whale these surves were made with some care, they covered only a wry limited ara. For this reason it is limardone to draw ernorntbathons. hut other evidonce indicates that yheremetitans desoribed in these reports are fypieal of much of the instruction in arithmetie :t this time. However, when we compare the instruction in arithmetie during this proded with that of the eiphering-hook periond. progress is shown. There is an enlarated comerpt of the function of the teacher, and if wo take into aceomet that at the: time arithmetie was " "aquired" suthjere and not an "elective," it is probathe that the realle socured ware superior.

Cotharis intuene upen the traching of arithemetic.-A comparianl of Coblumis method of teathing arithatetice with the praction durng this period reveals that he influened lee teathing of the subjert much less than he did tho texts. The nse of aidertive materiats and the oral instruction which mental arithmetic made nectessary may be attributed to him.

He advocate.' 'lass instration and disensed its tochnicpue in his whtress on the "Teaching of arithmetic," but it is doubtful, if the adnpion of this plan of instruction was due to his advocacy of it. Ouside of these foutures, which were a result of his texts rather than his presentation of the method of teaching arithmetic, there is little trace of Colburs's influence. This condition is easily explained by the fact that a method of teaching is much less tangible than the form of a textbook. Also, in the making of texts there are few persens concerned, as compared with the number of teachers.

[^24]Chapter X.

RECENT TENDENCIES AND DEVELOPMENTS.

The development of arithmetic since 1892 has been more imtimately connected with the general educational development than it was during the period beginning with 1821 . An attack upon the importance of the disciplinary function of arithmetie grow out of two more goneral morements.
The Herbartian motement.-Beginning about 1890, Americam ealucators were greatly interested in the educational princjples enunciated by Herbart, a German educator who lived from 1if6-1s.1. Some of the important events in the rise of this movement were: The publication of educational books on Herbartian principhes; Essentials of Method, by Charles De Garmo, 18s9; Gemeral Methoul. by Charles McMurry, 1892; The Method of the Recitationt, hy Frank McMurry and Charles McMurry, 1897; and the formation of a national Herbartian society in 1892. The principle of apperception, which is one of the most important accredited to Herbart, was emphasized by his followers in America. Briefly the principle is this: ${ }^{1}$ Now experiences are given meaning and interpretef hy means of the ideas which one has obtained front his past experience and which are present in his consciousness at the time. This principle, coupled with Herbart's concept of the immediate end of education as the development of a "many-rided interest," means that education is to gire the child (1) a "many-side" acquaintance with the extrnal world, and (2) to give this acquaintance in such a "way that it will be accompanied by an active "interest" in pach "side" of this experience. The child will then be equipped to meet new situations as they arise.
This theory, which places the emphasis upon the content of a subject, is fundamentally opposed to the disciplinary concept of education, and the wave of enthusiastic interest in the work of Herbart which swept over the United States did much to counteract the great emphasis upon the disciplinary function of instruction in arithmetic. The Herbartians emphasized history and literature as subjects in the elementary school, and by so doing were a factor in reducing the amount of time given to arithmetio.

I For Farbirt'e owa mocount, we Outimes of Educelicosi Doctrtmes.
128

The psychological movement."-In his "Principles of Psychology," 1s:30, William James atatod that one's native ability to retain can nut be changed, ${ }^{1}$ which moans that a general capacity to remember can not be trained by specific exercises. This assertion, which Was "supported by some plausible experimental evidenco" was extended by other educators to a complete refutation of the theory of formal discipline as then interpreted.'

The reaction against the disciplinary qulue of arithmetic.-Couplad with these two movements, partly as a result of them, buth educators mad the public became mon actively critical of the work of the publice schools.' There were raports of investigations ' and more peneral utterances bused upon general observations, The following an typical of this latter type:
In almost all of the arithuctice, fint come the definitions, then the rules, then a pnhbenn with full explanation, then the problems for the children to work acconting

From unasixth to one-forrth, or even one-thinl, of the whole erbool time of A merrican rhildren is given to the subject of arithmetic-a nubject which doen not train a single non of the four facultien that it should be the fundamental object of education to deselop. It has nothing to do with oberring correctly, or with meording arcurately the neults of observation, or with collerting facta and drawing just inferences thenfrom, or with expreenius rlearly and foribly loyical thought."

In 1892 the Committice of Ten, a committee appointed by lise Sational Education Aswociation, recognized the existence of a formal disciplinary valuo of arithmetic,' but insisted that it was "greatiy inferior to what may be obtained by a different class of exercises." Eisentially this is a refutation of the doctrine of formal discipline as it had boen applied to arithmetic.

Simon Newoomb, who was chairman of the subcommittea on mathematics, stated in another place that "the main end of mathematicnl teaching -we might say of teaching generally-is to store the mind with clear concoptions of things and their relations."
Charles A. McMurry stated that the "chief aim of arithmetic is the mastery of the world on the quantitive side through number coneepts." ${ }^{\circ}$

[^25]These last two atatements are representative of the pere Herthertian point of view and of the extreme reaction against the importante. of the disciplinary function of arithmetic. ${ }^{1}$

Arithmetic a prychical and seciald demame. -The most important constructive contribution of this period wes made by Prof. laten Dewers, whos fundamental thesis whe that the peychical and serial envinoment in which we live presente prolloms which the haman: mind solver be measurement, i. a., by number and mamber relatma, Thus number is not a propert! of objeqtes. hut rather it is " the prondu.t of the way in whin the mind derke with ohjerta in the operaten of making a rague whole defimte." The necosisty for making than vague wholes detinite grows out of the fact hat if material hime are "limital," (a) that energy mast be comemizent; and (is) has remote code must be atemined.

Dawey illustrates thase reasona as follows:

 jurand

 the est in viow-the blling of the gatue.

 meanurement, and mumerical ideas.
To this principle Dewey addod his more general educatimal principle that the process of education is most efliciontly carried on when the chald is placed in the physical and sucinl environment whela demand psychical activity. Applied to arithmetic, this means that w teach it efficiently the school must produce sitnations which call for measurament and the relating of quantities. According to thathesis the immediate purpose of the author of a lext and of the teacher

[^26]would be to provide these situations. When taught from this point of virw', arithmetic affords "an uncivaled means of mental discipline," that Dewey dows not use "mental discipline" in the senme in which it was used by the authors of arithmeties during the pravious periokl.
Buth the diaciplinary and the utilisarian functions of arithmatic rocognized at presens. - Through the publiention of The Psychology of Camber, and through the cxpmplatication of has principhes in the liniversity Elomentary sheol. Dewery combinad with the reation arainst the docerine of formal diseiphere in inthencing the concept of the aim of instruction in arthmetic. Siren ather the pabilication of The Peychology of Number two series of arithmetios were pubhhed which the muthons damad anheabed the primejplis enunciated by Deway. Other nuthomhalded upen them in part. Thesie wats have beena factor in incrensing the emphasts upon problema takra frim protiond situatums. and hother upon the uthlturian value of arithmetic.
The remothon against furmat diaciphan was followed hy a counter action in which educators have recognazed the disesplanary function of arithmetie:' but in wemernl they noworded the uthlitarian value apand rank, and thix appors to the the proment satus. A rewne quatiomaire was sent to 185 state mormal solwols and to is city
 athents and 3 city training selowls. In tramug temethers of mathematues

In all of this agitation there seems to have bern the underly ing purjume to adapt arithametie to the nature if the chatiand to the sterial demands which will te made upan him when he heavers sthoul.
Difintion of the aim of instruction. Reconty srimenfie insestigation has reverded ant the product of instraction in arithontic is mot a single ability but consists of many abilitites. The ability "to add columes three figures long is not the same ability as to add colthmens five figures long." Exch type of "xample calls for a different abilty, and thas the product of instruction in arithmertic ind hades as many different abilities as there are different types of axamples. Courtis has identified 15 different addition abilities,'s for subtraction, 11 for multiplication, and 14 for division.

[^27]This analysis of the product of instruction in arithmetic has made possible more exact and objective definitions of the aim of instruction. At present this has been done by Courtis for the funda-, mental operations with integers. ${ }^{1}$ For any particular grade the teacher and pupils have for their aim, in so far as it involves the fundamental operations with integers, to attain the ability to solve examples of certain types with a specified speed and accuracy. These standards are based upon extensive experimental data gathered from both schools and the commercial world. These detailed and objective statements of aims of the instruction in arithmetic are not opposed to, but will supplement, the more general statement of aim.
Less time given to arithmetic in the schools.-During the preceding period a large per cent of the total school time was given to arithmetic. Estimates ranged as high as 50 per cent or more. ${ }^{2}$ The Committee of Ten, 1892, stated that a "radical change in the teach-" ing of arithmetic was necessary," and recommended that the course be both "abridged and enriched." In 1895 the Committee of Fifteen reported as follows:

Your committee believes that, with the right methods and a wise use of time in prepaning the arithmetic lesson in and out of achool, five years are sufficient for the study of mere arithmetic-the five years beginning with the second achool year and ending with the close of the aixth year; and that the seventh and eighth yeare should be given to the algebraic method of dealing with those problems that involve difliculties in the tranaformation of q-.antitative indirect functions into numerical or direct quantitative data.
Your committee is of the opinion that the so-called mental arithmetic should be made to alternate with written arithmetic for two years, and that there should not be two leesons daily in this subject (arithmetic). ${ }^{3}$
In another place the committee reports "that the practice of teaching two lessons daily in arithmetic, one styled 'mental' or 'intellectual' and the other 'written' arithmetic, is still continued in many schools." " Although there was a marked tendency cven before 1892 to combine "mental" and "written" arithmetic in the texts, this practice persisted in some places until very recently. Separate classes in mental arithmetic were discontinued in Kansas City, Mo., in 1913.
The following data show the change in the relative amount of time given to aithmetic in several American cities.

[^28]Per cent of total school time given to arithmetic.'

${ }^{1}$ The data for 188 and 1004 ane taken from B. R. Payde: Public Elementary Bchool Curricula; for 1800 snd 191011 from 1.8 . Hureau of Education, Bultectin No. 1, 1011. For 1800 and 1910-11, algebra isughe in the rrades is sucluded.

A recent investigation ' of 50 of the leading American cities shows that 15.26 per cent of all of the school time is devoted to arithmetic. However, in the rejort of the same investigation it is stated that mathematics is "less prominent in city systems than in the rural districts." "This indicates that 15.26 per cent is too low for the country as a whole.

While the change in the relative time allotment has been irregular in many of the cities, and there is little uniformity, the tendency in rity schools seems to be to give a little more than 15 per cent of the school time to instruction in arithmetic, which probably represents a decrease of 10 to 25 per cent since the middle of the past century.

The content of the texts.-Arithmetics are usually published in the form of a series which consists of a primary text followed by one or two books for the upper grades. With very few exceptions the primary texts are intended to be completed by the end of the fourth grade.

In these primary texts, pictures and graphical designs are employed for representing objectively numbers and number relations. It is frequently suggested that the teachers introduce objects for this purpose. Denominate numbers are introduced very early in the texts. Some authors intend that the relations between quantities, such as pint, quart, and gallon, shall be developed by the children, and most authors intend that the children shall have some first-hand acquaintance with the most common measures.

Dewey contended that number and number relations were the product of measuring. ${ }^{2}$ Soon after the appearance of The Psychology of Number, in 1895; measuring was made a prominent feature of a few series of arithmotics, especially the primary texts. In more recent texts it has been given a place, though with .varying degrees of emphasis. Pupils are asked to tell which is the longest

[^29]${ }^{2}$ Bee p. 130.
or which the shortest of a group of lines, to estimate the length of - lines, to fold paper figures of given dimonsions, etc. Tables of drnominate numbers are developed by measuring. In the more ad-. vanced grades, the pupils gather data for some of their problems hy measuring eity lots, school gardens, and from the measuring in making articles in tho manual training shop and in cooking in the domestie science laboratory. Counting, as a form of measuring, is very conspicuous in some texts. The courting of objects was a part of the plan of Colburn. But now they count by twos, by threes, by fours, etc., not counting objacts, just counting,

In some texts there is an at tempt to have the ehild engage in activities which will demand a knowledge of number and number relations. Number gamos, suth as ring-toss, bean bag,' ete., aro variod in such ways that fundamental number facts are demanded in determining the rolativa standing of tho participants. Kereping store, cooking, and other construction work are used to create situmtions which require a knowledge of number and number relations. Moro - frequently the author of the text describes a game, a store, a bank, a farm, a factory, or some other activity, mad then gives a serios uf proble ms of tho type which do arise in such situations. It is suggested that when possible the pupils be taken to visit the actual induxtry. An understanding of the activity in which the problem oceurs is regirded as a legitimate phase of arithmetic.

The problems in these lists aro for the most part such as act tunlly do arise in the given activity, and thero is an increasing tendency to go to the occupation and take problems which have actually arisen. But as yet this has not been done very consistently. There has bern a very pronounced tendency to use exeessively large numbers in the problems. For example, in a popular text the first problem under the hoad, "Our Forests," is: "If there aro $672,000,000$ acres of woodland in the United States, how many square miles are there?" Euch problem in the list involves a number as large as a million. Besides the practical problems which are thus grouped in lists, there aro many drawn from a wide range of sources. 'This range suggests the plan of Horace Mam, ${ }^{2}$ but he probably influenced the present sit untion only slightly, if at all. Problems of the type, "The area of the Atlantic Ocean is 24,651,410 square miles and this is 49 per cent of the area of the Pacific Ocean. What is the area of the latter?" uro prevalent.

The Speer method.--Another interpretation of the child with respect to afithmotic was made by William W. Speer. The basis of his plan for arithmetic was that number was a ratio obtained by comparing two magnitudes. He devised a set of solids which the

[^30]pupil was to handle and compare. The pupil's idea of number and ${ }^{\text {c }}$ the operations upon them were to come from these activities. This idea of ratio permeates the whole of his texts, which were published in the later nincties. The plan had been conceived by Tillich many yurs before. However, there is no direct evidence in Speer's texts to show that he was indebted to Tilliah. The question of the orisinality of the work is of little importance, for, while the "Speer nwthod" attained some popularity, it never became widely used, and there is very little trace of it in our present popular texts.
Omissions. - The texts of tho previous period contained topies and problems which had little or no practical value. The report of the - Committoc of Ten, which we have taken as marking the beginning of the recent period, contained the following recommendations with refirence to these topies:
Among the subjerts which should be curtaited, of entirely omitted, are compound
pripurtion, cube root, abstract mensuration, obsolete denominate quantities, and the
grather part of commercial arithmetic. Percentage ahould be rigidly reduced to the
neide of actual life. In such subjerts as profit and losa, bank discount, and simple
and compound interest, examplea not easily made intelligible to the pupil ahould be
omitted. Such complications as rewult from fractional periode of time in compound
interent are uselew and undesirable. (P. 105.)
F. M. MeMurry, in an address before the National Depart ment of Superintendence, 1904, enumerated a list of topics which he thought might woll be omitted. The curtailment which he advocates is someWhat in exeess of that recommended by the Committee of Ten, but. in general agrees with it.

In 1911 the International Commission on the Teaching ' Mathematies, referring to the above rocommendations, report that "only 35 per cent of the 50 largest cities have followed out the recommendation."
In a more rement investigation ${ }^{2}$ a questionnaire was sent to city superintendents to which 867 replies were received. A majority of thew favored climinating apothecaries' weight, furlong, dram, quarter in aroirdupois, compound proportion, unreal fractions, alligation, and progression, and less than a majority favored eliminating Troy weight, rood in square measure, surveyors' tables, foreign money, folding paper, roduction of more than two ateps, long method of grentest common divisor, least common multiple, true discount, cube root, partnership, compound and complex fractions, cases in percentage, annual interest, longitude and time, metric system, and aliquot parts. However, a majority favor either eliminating or giving less attention to all these topics. On the other hand, from three-fifths to three-fourths of these superintendents favored giving more attention to addition, subtraction, multiplication, division, and

[^31]fractions. A majority favored giving more attention to saving and luaning money, taxes, public expenditures, insurance, and public utilities.

The course of study. -The grade occurrence of arithmetic topics based upon 47 courses of study is given in the following table: ${ }^{1}$

Since only 47 courses are included, it is very evident that sevoral topics must be taught in one or more grades; and, on the other hand, some of the topics have been eliminated in some of the cities. For example, partial payments occur only 8 times in 47 courses of stady. Hence this topic has been eliminated in at least 39 out of the 47 cities.

The International Commission on the 'Teaching of Mathematics summarized their findings on the course of study as follows:

Grade 1.-More or less incidental number work or number work correlated with manual training or with some other definite sulject. Variations: From no ulmber work at all to very formal work on addition, subtraction, and the multiplicatim tables.
Grade 2.-Number wirk correlated with other subjects. Addition facts amplat sized and in many places the multipliration table begun. Variations: In a fow schools there is no number work; in some, at the other extreme, division is taught. Grade 3.--The procese of addition and subtraction mastered, together with sume work on the multiplication tables, the tables often being completed. Variations: A few achools give no work at all, while some give consideranle work in fractions.

1 This table is from the Course of study in Mathematies, Connergvilie (Ind.) I'ublic gehools, 1911. The tabulat twas made by Mr. G. M. Wilson, then the superintendent of sehools. The courses of study reprecinted oitite in 38 different 8tates.

Girade 4.-Multiplication and division mastered. Variations: Fractions are taken up in many echools.
cinde i.-liactions mastered, some decimals introduced, denominate numbers employed.
(irade 6.-Decimals as related to common fractions, with much problem work. In sume echools simple interest and percentage are begun.
(irade 7.-Percentage and mome of its applications.
(irade 8.-Business applications of percentage; mensuration of molids. Variations: Xor arithmetic st all in the whole or latter half of the grade; the time devoted to aligebra; algebia combined with arithmetic.'

Returns from 754 cities show that seren-tenths of 1 per cent introduce a text in the first grade, 8.7 per cent in the second, 56.1 per cent in the third, 27.7 per cent in the fourth, 6.1 per cent in the fifth, and seren-tenths of 1 per cent in the sixth. ${ }^{\text {? }}$
Tho variations in school practice which these investigations show are significant. The courses of study have not been constructed scientifically. The occurrence of topics is due to tradition and opinion. Many of the distributions of the occurrence of topics resemble chance distributions. ${ }^{3}$

During the period from 1821 to 1892 the systematic study of arithmetic was usually begun when the child first started to school. cometimes that was as early as the age of 3 or $4 .^{4}$ The Committee of Ten say: "The course in arithmetic thus mapped out should hegin about the age of 6." F. M. McMurry said, in 190.4:

In eddition to all of these, arithrbetic may be omitted as a e parate at udy thmughout the first year of achool, on the ground that there is no need of it, if the number incidentally called for in other work is properly attended to.

Some writers within the last few years hare gone on record as saying that the systematic study of arithmetic should begin in the fourth, grade. Inrestigations show that in some cities no systematic arithmetic is taught in the first three grades, and it appears that there has been a morement in the direction of delaying the systematic study of arithmetic until about the fourth grade. When arithmetic is not studied systematically in these primary grades, incidental instruction in the subject is usually given by means of number games and in connection with the other subjects.

The organization of the texts.-Prior to this period the general plan of the practical arithmetics had been topical, i. e., addition was completed before'subtraction was begun, and in turn subtraction was completed before multiplication was begun. This was also partially true for the primary books, but beginning about 1896 texts began

[^32]to appear which were organized upon what has been known as the "spiral plan."

The Werner Aritnmetion, by Frank H. Hall a thme-book series: for graded. schools, and The Hall Arithnetics by the same nuthor, a two-book series for graded or ungraded schools, were piuneers in the exploitation of the spiral plan of organization. A copy of the Werner Arithmeties, Book I, which I have bears the date 1896 . As to the plan of this text, Mr. Mall says in the preface: •-
The first five lives of this beok prosent problems in addition, subtraction, multiplication, division noting the number of gmupe, and division nowing the number in rath group. Then, by a kind of epiral advancement, the pupils movo around this corte and upward through all the intricaciés of combunation, mparation, and comperimen if numbers.
The arrangement of topios is unique and mavenient. In this bowk measurement problems apperar on pages $43,53,63,-3$, etc.; a certain clase of ír.tion prohleme un pager 45, 55, 65, 25. etc.: facta of addition, aubtraction, multiplication, abd divishon on pagee 41, 51, 61. 71. etr. This decimal arrangemen of aubjectes make the bouks almost as convenient for reference as are the beaks that are made on the ntrict clawification plan, while the frequent recurrence of similar matter insures thorough revinw.
This spiral arrangement, which was followed in the other texts of the seriea, found faror very quickly. Within the next few yenrs a number of texts were published which were organized upon the simmal plan. A few were as extreme as The Hall Arithmotics, hat ill general the spiral plan was modified in part.. The spirals wore bos numerous, and the "decipial arrangement" was not followed. Within the last few gears there has been a pronounced reaction. The spiral plan has been severely criticized, and authors of some of the spiral texts have found it hecessary to reviso them, climinating some of the spirals. At present the consensus of opinions seemes to be in favor of a moderate spiral for grades one to four, a topical phan for grades seven and eight, and a transition fron. the one play to the other in grades five and six. Some authorities, while agrecing with the above general opinion so far as the actual instruction is concorned. contend that the best results can be obtained from using a topical text above the primary grades. The teacher can then adopt a spiral which will meet more nearly the needs of the community and the particular class.

The Grube method.-Grube (1816-1884) was a German whose "claim to rank as an educator lies largely in his powrer of judicions selection from the writings of others." ${ }^{1}$ The features of Grube's writing which stand out most clearly are objective teaching, the measuring of each number with fixed units, the spiral or concentric circle plan of organization, thoroughness and complete mastery, making of each arithmetic lesson a language drill, and the simultaneous teaching of the four fundamental operations for eath number.

[^33]Grube presented his method in "Leitfaden für das Rechnen in der Elementarschule, nach den Grundsätzen einer heuristischen Methode" (Guide for Reckoning in the Elementary School, according to the Principhs of a Heuristic' Method). This was published in 1842. The begiming of the method in this country dates from 1870 , when F . Louis Soldan presented to the trachers' association of St. Iouis an account of Grube's plan for teaching the numbers 1 to 10 . The Wan wis tried in the St. Louis schools and later chawhere. In 1876 Whidan presented the remainder of Grube's plan, which includes the numbers 10 to 100 and above, and common fractions. This was intended to cover the, work of tho first four years. In lisse lavi Snefy nrote cimbe's Method of Traching Arithmetic. This is really a complete text for the first four years.

The method rapidly became popular in many sections of the comery. One writer suggests that the reason for the popularity of the method in this country was due to Grube stopigind treatise being brief and written so as to be easily translated and to the fact that it was a "German" method. Furthermore, it scems that the friends of the method, or at least those who first used it, saw most clearly the good features and emphasized them to the partial or entire exclusion of the less desirable features. Doubtless they, in their enthusiasm, secured commendable results. But as is often the case, as the method Was pasied on to other teachers, the attention was fixed primarily on the most obvious phase of the method, which said that the four fundamentel operations should be taught for each aumber before the next Whis taken up. Thus within recent pears this single fenture has come to stand for the Grube method.
Grube's method has been severely criticized by several recent writers on the teaching of arithmetic: As a plan of tarhing it has been diseredited.' Much of Grube's method was not new to the Linited States. In fact all the fentures are to be found in texts published prior to 1870 , though some were not given paite as extume form. Objective teaching began with Colburn. Davies held that the unit was the basis of all numbers and treated each number "us a collertion of units." Emphasis had already been placed upon thoroughness autd drill in language. In the Child's Book of Arithmotic, 1859, D. P'. Colhurn approximates the concentric cirche plan and the simultan*ous teaching of the four fundamental operations. However, this does not alter the fact that Soldan introduced the Grube method -directly from the writings of Grube.

The relation of the Grube method to the spiral plan.-The opinion is prevalent that the spiral plan is simply an outgrowth of the Grube method. However, the writer has failed to find evidence to show

[^34]this. In fact, there is eridence to indicate that the spiral plan'was the result of attempting to fit the organization of arithmetio to the child and to secure thoroughness.

The texts of the previous period were topical, but the order pursued by tha pupil was spiral. Not only this, but there were frequent review exercises. Now, when the slogan was "adapt arithmetic to the child," what would be more natural than to put the spiral mito the text rather than leave it to the pleasure of the teacher. Thoroughy ness was the cry, and psychologists were saying that only by repertition is thoroughness secured. Then, the plan of the text make repetition certain. Frank H. Hall suggests this conclusion when he says, "Proper sequence with reference to the pupil has hern constantly in the thought of the authe- in his selection and arrangement of matter," and later, "the frequent recurrence of similar matter insures thorough review."

A careful comparisor, of the Grube method and the spiral phan reveals many essential differences and few points of contact. Grube did not go beyond the work of the fourth grade. Within the year his spirals were all of the same size; no now matter was admitted in the successive revolutions. The spiral plan usually provided for some preliminary number work in which the pupils learned to connt (Hall says up to 100). Also they learned some of the number facts. Grube did not provide for this. The spiral plan did not make the magnitude of the numbers the basis of the spirals. Furthermore, the work of Grube had been severely criticized by Dewey in 180\%

Rationalizing the teaching of arithmetic.-The changes in the aim, subject matter, and organization of arithmetie, together with other factors, have combined to change the method of teaching arithmetic. The present period has been one of transition. Perhaps lets has been accomplished in modifying the method of teaching than in the other asperts of arithmetic. Certain it is that school practice has fallen far short of realizing the ideals of method proposed by leaders in arithmetical reform.

The most important factor in this transition has ween the child, and progress has been made in the direction of adapting the method of teaching to the nature of the child as revealed by modern psychology. But this progress has boen attended by unfortunate wanderings after "single idea methods" and devices. However, the period has been marked by progress. Methods which in themselves are open! to serious criticism have rendered service by making obvious defects of the dogmatic, memoriter, disciplinary methods of the past.
Development of topics.-It follows immediately from Dewey's first thesis that the pupil's understanding of number and operations with numbers must result from his own psychical activity. This implies that it is the function of the teacher to provide situations
which will oxercise the pupids mind and to simply guide the pupil in this activity. The method of such teaching would consist of a plan for providing situations which call for the aso of number and number relations, for moving the pupil to work upon them, and for guiding the activity of the pupil. The plan for guiding is to bo based upon the normal way in which the child's mind works in "making a vague walle detinite."
The Iherbartian flan. - The leaders in the llerbartian movement in the Lnited States emphasized inductive thinking, and their concept of inductive teaching became guito popular and was applied to arithmetic along with other school subjects.

Charles ... McMarry says:
"The study of arithmetical prowew furninhow ome of the bewt oplertunition to

 important practical and theoretic affaim that nead arithmetical clarification.'

The derivation of "these general processes" consisted of the steps (1) preparation. (2) presentation, (3) comparison and abstraction, and (4) generalization.
Tho llertartian phan applied to arithmetic was received with enthusin om by ma.., teachers and was by tiem unquestioned. The attempts to use it in actual tenching becmome and are to-day widepread. But the Herbartian phan of inductivo development has been severely criticised, ${ }^{2}$ and it has beon peinted out that it is a sperial ease of reflective thought with the steps of problem, data, hypothesis, and verification. In additjon, the practice of developing or rationalizing every topic in arithmetic has been criticized recently by somo educatons. They point out that some parts of arithmetic, surl as the fundamental operations, must be reduced to habit if they are to function efliciently. They contend that to attempt to explain the "why" in such processes as "earrying" in addition and "borrowing" in subtraction "is merely to stir up unneressary trouble, trouble unprompted by any domands of actual elliciency."

This position with respect to rationalization is summarized by Suzapto in his book, The Teaching of Primary Arithmetic, 1912.

He says:

 : See 8. C. Parker: The History of Yodern Elementary Education, p. 425 I. for a summary of these criticisms.
$81758^{\circ}-17-10$

This reactionary movement should not be interpreted to mean a return to the former memoriter plan of instruction and drill. It indicates rather that mental processes are being carefully examined and modes of instruction are chosen with reference to the subject matter involved and the end sought.

In the Herbartian plan, deduction came in the step of application and was treated as an incident in the total cycle of inductive development. But it has been pointed out that in life we make many deductions for every induction, and that in the rationalizing of arithmetic deduction has an important place. It is also a special form of reflective thinking, the distinction being that the general principle is a part of the data, and the hypothosis consists in subsuming the particular case under the appropriate rule.'

Motivation. Interest as a motive.-Along with the efforts to adapt the mode of instruction to the child, there have been endeavors to work out plans for securing incentives for the mental activity of the child. In reacting from the plan of securing motive by rivalry, emulation, fear of punishment, etc., interest was conceived of as a motive, and the plans for securing motive were plans for arousing interest. Interest and its attendant conditions were very imperfectly understood by the great majority of teachors, and blunders were made in attempts to arouse interest.

For instance, it was proposed that children like easy things, that difficulties were uninteresting. Hence to make arithmetic interesting, make it easy. So difficulties were divided and subdivided or rennoved. The pupil was "prepared" by the teacher for each topic. And this nemic subject matter was to be intaresting and attractive to the pupil because it was easy. Or, the uninteresting became interesting when "associated" with the interesting. Hence to make an uninteresting topic in arithmetic interesting, "associate" it with some activity which the pupil has already found interesting. For example, children are interested in games; they are not interested in the multiplication table. Thus to secure interest in the multiplication table, associate it with some game. This has been done by devising a game with which the multiplication facts could be "associated."
The efficacy of this plan depends upon the interpretation of the word "associate." If it is taken to mean that the game is to be so arranged that the pupils will need, or find useful, the number facts to be taught, the number facte will become intereating. They are then a means to a valuable end. But this was not the way it sometimes worked out in practice. As recently as 1911, an author giver a lesson plan of teaching the multiplication table of fours in which the game of bean bag is to be utilized. The pupils have already played it in

[^35]learning the tables of twos and threes. According to this plan the tencher says to the pupils: "If we are to make large scores, what table must we loarn next? How many think they can learn half of the tahle of fours to-day f If you learn it, we will play our gamo ten. minutes." In this case the "association" of the game with half the table of fours consists of holding up the game and its attendant plemsure as a bribe for momorizing three multiplication facta. The subject matter bears no intrinsic relation to the value to be controlled.

In contrast to this emphasis upon making arithmotic interasting, there is an increasing tendency to recognize that parts of arithmetic; perhaps most of arithmetic, are in themselves immediately interasting to children. This is particularly true of the work of the primary and intermediate grados. D). E. Sinith says: "Such statistical information as wo hare shows that arithmetic has aluays heen looked upon by chiddren as onc of the most interesting subjecte of the course."

Since the publication of The Psychology of Number there has been an incroasing tendency to secure motivo for work upon arithnetic by having the chidd feel the need for number and number relations before he is asked to study them. D. E. Smith says:" This ideal is not aways easy to realize, but wo are approaching it in our education of children, and the tendency is a healthy one." 2 Tho teacher is to cause the pupil to feel a nead by taking adrantage of the quantitative situations the pupil meote in his life outside of school and by so setting - the stage that ha will meot others. The latter plan is illustrated when the pupil undertakes a projert in the manual-training shop or in the domestic-science laboratory and discove:s that he needs arithmetic, or when arithmetic is taught incidentally. Need is also felt when a pupil experiances difficulty in controlling a situation efficiently. In such a case he noeds a better mothod of control or drill upon his prasent method. "The attempt to make arithmetical problems "real" and "concrete" has boen prompted, in part, by the desire to secure inotive.

Objective methods.--Prior to this period the use of objective materials had become rather indiscriminate, and often was looked upon as an end in itself. The significant feature of the objective teaching of this period has been a tendency toward a more refined correlation of the pupil's "experience with the social problem or subject involved." The objective materials have become more varied, and there is an increasing tendency to look upon them simply as a means to an end. These changes have resulted in a wider distribution of objective methods, but at the same time a clearer under-- standing of the function of objoctive materials has resulted in the total objective teaching being reduced.

[^36]ARITHMETIC AB A BCHOOL BUBJECT.
Correlation. - When attention was focused upon the child the unitary nature of his lifo outsido of achool was rescaled. In contrist, the course of study portioned out the child's time th the several school subjects, and each mobject jealously guarded its apportioned peri.nd, rementing any encroachment. Each schoul subjert was taught isolated from the other subjects. Ther topurab a rangenent of wexta, as in the case of arithmetic, tededed is indate topica within a subject. And to a very considerable extent the work of succesive dags wens isolated. Within the racont perand plane for rolieving this isolation have bern proposed. Bachase of their bearing upon the waching of arithastic, some of them are worthy of our notice. The subcommitte of the Committer of Fiftuen appointad by the National Education dracoiation. Istas. reporting on the correlation of stadies recognized five "staphe branches of the elementary counse of study." These wore grant. mar, literature, arithmetic, geography, and history. They comtended that "there should be rigid isolation of the elements of each branch."

In opposition to this, plana of concentration were proposed. A subject, or a elosely related group of subjects. Wes takern as a conter and all other sehool subjects were made subsidiary. it well-known attempt at concentration war made hy rial. F. W Parker at the normal schowl of Cook County, III. He concentrated the curriculum around the arientific sulbects, emmentary seimare. geography, myth, and hisyory. Arithmetio was simply a means for controlling arithmetical situations within these subjerts. By, using it as a wol, arithmetic would be sufficiently learned. In fact Col. Parker believed that geography alono is sufficiont.

If the child had no other atudy than that of mextaphy, and the exerrime of the

Charles A. McMurty, in The Elemente of ciememel Methosl, 1903, advocates correlation. This he defines as 'such a comnection between the parts of each study and such a spinning of relations and connecting links betwern different sciences that unity may spring out of the variety of knowledge." This is opposed to A plan of concentration such as proposed by Cah. Parker. Farch important study is to be isolated for purposes of instruction. Bul correlation also means that arithmetic is to be taught so that every imporiant topic will be seen "in its natural relations to topics in other studies, thus binding the studies together in a multitude of close interrelations." In this way arithmetic, though taught as a separate subject, is to be correlated with geography, elementary science, history, etc. This is to be done by taking problems from
these subjecta for part of the work in the arithmetir clasa and by using the knowledgn leamed in the arithmetic clase as a tool for the better understanding on these other subjecta.

By some, correlation was given additional menning. Connection was to be made betwen topies within a subject, and even between the lessons of sucressive deys. This was to be accomplished by " proper ordering of the topics and by revinos. To neview the previous lesson to secure the connection berame with many a ateresary mark of gerad trarlaing.

Drill.--If ome may draw conchasions from the texts, the epphaxis upon drill as a factor of the teaching process has, in general, inereased in this period. All of the more popular texte give much spare to exercises for rapid drill. Some are in the form of special. devices whase function ja to asaist the teacher in calling for combimations rapidly and in a variable onder. A deviee which seems ta) be standard, but which appears in several variations, consista of "mmber surrounded by other mombers placed along sone contuar. By chowsing appropriate numben this deviee may be used for drill uponany of the fundamental operations. The device may be used dimedy from the text. or it may he transferred to the backboand. In aither case the tarcher designateas a number on the contour. and the pupila are tejerform the repuired operation upon 1. For example. If the process is division, the number in the conter ss. and the mumber designated on the contour is 72 , the pupils are to) pive the quotient of 72 divided by 8.

Other plans for securing rapid drill upon the fundamental number factis are camoting by twos, by threes, by fours, ete., adding numbers As the leacher writes them on the board or dictates them, and using drill cands which have exercises upon them. The pupila may be divided into groups for momber contests, the group wiming who does the work the mont rapidly or the most accurately; or, instead of dividing the class into grinipe, all may work all the execeises, and scores be kept. At the end the tatal seares for the set of exarcists are computed, the pupil making the highest soome being the wimer. It has been urged that sonfe time each day be deroted to rapid drill. One authority states "about fire minutas a day devoted to rapid oral work are sufficient to keep grammar-scheol pupils in practice." Besides this "rapid oral work," he contends that there should be a definite amount of rapid written work every day. The median per cent of time given to strictly drill work in arithmetic in 564 cities is as follows for the several grades:' First grade 43 per cent, second grade 50 per cent, third grade 53 per cent, fourth grade 47 per cent, fifth grade 39 per cent, sixth grade 31 per cent, seventh grade 22 per cent, and eighth grade 17 per cent. But notwithstand-

[^37]ing this increased emphasis upon drill, skill is regarded less as a primary aim than heretofore. The function of drill is being better understood.

Scientific investigation and experimentation.-The pioneer in this field was J. M. Rice, 1902 , who attempted to evaluate the excellence of instruction in arithmetic by measuring the results of that teaching and to determine what factors contribute to superior results. He gave a test to 6,000 pupils in the fourth to eighth grades, inclusive. On the basis of the data obtained he eliminates as controlling factors home euvironment, size of classes, time of day which a class recites, age of pupils, time devoted to arithmetic, amount of home work required, method of teacking, and general qualifications of teachers, and concludes that the quality of the supervision is the controlling factor in determining the achievement of pupils in arithmetic.

The procedure of Rice's investigation is open to criticism as night be expected of a pioneer study, but it stimulated and inspired other scientific investigations and experimentation. The major prob)lems attacked have been: (1) What is the nature of the product of instruction in arithmetic? (2) What factors are most effective in producing arithmetical abilities? (3) How to measure these abilities and to set standards of attainment in these abilities. (4) The determination of superior methods of instruction and courses of study by scientific experimentation. (5) A scientific analysis and study of the learning process as it occurs in the cuse of arithmetic. The most extensive work on these problems has been by S. A. Courtis, ${ }^{2}$ who received his inspiration and stimulus from an investigation by C. W. Stonc. ${ }^{3}$ In addition to atifying alementary arithmetical abilities, which we have mentioned on p. 131, Courtis * has devised tests for measuring these abilities. and has sot tentative standards of attainment in them. His standard practice tests and the manual which accompanies them represent the product of his study of methods of instruction and the learning process. The most significant feature is a plan for giving individual instruction to pupils when formed in classes.

At present there is much scientific investigation and experimentation which is resulting in an accumulating body of data which can be used as a basis for directing the development of arithmetic as a school subject in the decades to come. This is the most conspicuous tendency at present, and the indications are that future development will be made in this way.

[^38]
Chapter XII.

SUMMARY.
The place of arithmetic in education.-During the ciphering book period arithmetic was a part of the school curriculum in those towns where it was demanded as a tool of commerce. In communities whose interests were not commercial and in the rural districts it was frequently not given a place in the plan of education and was conreded to possess little or no educational value. When arithmetic pas taught under these conditions, it was simply as a concession to its practical utility. This early attitude was modified somewhat before the close of the ciphering book period. The commercial need for arithmetiç had become more widespread and more universally recognized. When the Colonies became a free and independent Nation and a Federal currency was established, interest in arithmetic was greatly augmented. In 1729 the publication of the first arithmetic, by an American author had passed unnoticed, but the appearance of Nicolas Pike's text in 1788 marked the beginning of interest in improving the subject matter of arithmetic which was manifested by the publication of many texts. By the leginning of the nineteenth century arithmetic had been given a place in the schools, though not one of first importance. There is some indication of the recognition of an educational value in addition to the practical vulue. But to Warren Colburn is due the credit for initiating in this country the movement which gave to arithmetic the place of first importance in the curriculum of the elementary school and which caused some to exalt it as a newly discovered "royal road" to learning.

Recently there has been a reaction from this extreme disciplinary conception of arithmotic and a return to arithmetic as a practical subject. But the meaning of practical is not that of the eighteenth century. Arithmetic now represents tools which the child needs to control his present and potential quantitative situations. These tools are tw ie organized in accord with the nature of the child and as the child works out methods for controlling these quantitative situations and organizes the arithmetical tools which he has acquired, arithmetic fulfills its disciplinary function in pis education.

The content of arithmetic and its organizalion.- Two complementary tendencies are revealed in the modifications of the content of arithmetic. Practical demands and the desire of the arithmetician for a
logically rounded-out science have caused subject matter to be added, and tradition has tended to keep subject matter which has once been added. New subject matter has been much more rapidly incorporated than obselete subject matter has been discarded. The most conspicuous change of emphasis has been in reference to the -rule of three. Formerly it was the great topic, the "golden rule" of arithmetic. Now it has been reduced to the inconspicuous topic of proportion. Evolution has been reduced from an array of specific rules for roots up to the "squared square-cube root" until now only square root is frequently given. Some topics, such as permutations and combinations, position, and infinite series, have been transferred to more advanced couses in mathematics. Other topics, such as fellowship, certain tables of denominate numbers, much of exchange, tare and trett, alligation, duodecimals, annuities, etc., have been dropped as topics because the need which they satisfied no longer exists. On the other hand decimal fractions now occupy a much larger place. This has been due to the introduction of a decimal currency. In this way the relative importance of common fractions has been lessened, but they now occupy more space than formerly. More significant than the increased space given to fractions is the fact that they have been moved forward in the course.

The first great change in the subject matter of arithmetic came with the work of Warren Colburn. He introduced primary arithmetic and intellectual or mental arithmetic, gave a place of prominence to common fractions, and omitted the rule of three and other topics as such. Many of the omissions, for which he took a stand have since been made, and others are at present being urged.

Arithmetic being a practical subject, the problers, for the most part, have been practical when they were introduced. As conditions changed, some problems were no longer practical. Tradition tended to keep these in the texts, the result being that our texts have contained a number of problems from obsolete or obsolescent situations. A few arithmetical puzzles have always found a place in our texts. When the disciplinary function of arithmetic was emphasized, the number of such puzzles was much increased, particularly in the mental arithmetics. Recently the force of tradition has been verymuch weakened, and there has been a tendency to reduce the number of arithmetical puzzles and to insist that practical problems be practical. These practica? problems are to be drawn from a wide range of human activities and from the child's own life.

In the larger features of organization we have had many variations and combinations of the original topical plan and the more recent spiral plan. From a strictly topical organization we have come to a moderate spiral for gradeb one to four, followed by a transition to a topical organization in grades seven and eight. In the details of

organization the logical, deductive order of the past has been replaced by an attempted psychological order. Here again credit is due Warren Colburn for making the break with the past by organizing his texts upon the inductive plan. Following Colburn there wias a partial relapse to the old logical deductive order, but recently there has been a movement toward the form and spirit of Colburn's organization.

Methods of teaching arithmetic.-Before 1821 the teacher's function Was to set "sums," tell rules, and pass upon the correctness of the pupil's work. This instruction was given to the pupils individually. After 1821 pupils were usually instructed in classes, and in practice the technique of dealing with pupils in classes became almost synonymous with mothods of teaching. However, the concept of the function of the teacher was enlarged to include explaining the process and problems. Colburn and some others believed that the teacher should guide the pupil in developing his own rules. Some emphasis was placed upon drill, and much emphasis upon exact forms of analyses. Colburn's ideas concerning the teaching of arithmetic were as progressive as were his texts, but he failed to exert much direct influence upon the mode of teaching. Recently, starting with an analysis of the nature of the child, a clearer conception of the subject matter involved and the goal to be attained, more rational methods of teaching arithmetic are being worked out. In these rational methods direct instruction and drill have a place. Motive by appeal to artificial incentives has been supplemented by motive sectured by interest and by need. The spirit of present-day methods is to assist the child by making the instruction coincide with the natural working and development of the child's mind. Although Warren Collurn has influenced the present methods of teaching arithmetic scarcely at all, yet we are distinctly returning to the spirit and form of his methods. We art now, like him, studying the child for the basis of our methods.
The men who have made our arithmetic.-Wàrren Colburn without a doubt occupies first place, because of his influence in stimulating and directing the development. Much of our present arithmetic we owe to him directly or indirectly. He himself was much greater than his influence has been, and his writings are still sources of information as well as inspiration. To Joseph Ray we should give second place. He was not h great constructive writer and thinker as was Colburn, but his greatness consists rather of his ability to write clearly, to organize, and to adapt. Because he could do these things well, his texts have been given a wide and long-continued use in our schools. Following these two men, there are many others who have materially contributed to the molding of our present arithmetic and the methods of teaching it.

Some inferences.-The story of human activity, human progress, is always interesting, and it may be of value to the present generation in thoir attempts for improvement. The story of the development of arithmetic which we have traced repeatedly suggests that permanent improvement of content, organization, or methods of teaching must be based upon a clear conception of the child. In this was Colburn's greatness, and hero also is the foundation of our, rec̀ent progresss.
In their onthusiasm to improve arithmetic and its teaching, the teachers have not maintained a critical attitulo toward proposed reforms. Using methods which have since been shown to be fundumentally wrong, they have secured results which they interpreted as an improvement over provious results. The judgment of results has often been based upon biased opinions and has seldom been tho result of a clear comprehension of the aim of aritbmetic teaching and a comprehensive survey of the effert of the teaching upon the pupils. For this reason the judgments havo at times been defective. But the fact remains that the belief of a teacher in a method has been a large factor in the determination of the mensure of its success.

APPENDIX.
 TABLE OF CONTENTS OF DILWORTH'S SCHOOLMASTER'S ASSISTANT.

PART I.—OF WHOLE NUMBERS.

The Introduction. of Notation.
of Iddition
o) Subtraction.
(I) Multiplication.

Of livision.
Of Rerluction
Of the Single Rule of Throe Direct.
...... Inverse.
Of I'ractice.
Of Nimple linterext for Days.
Of Compound Interent.
Of Rebate or Disconnt.
Of Equation of Payments; the common
Wuy.
Of Parter.
Of Low and (ixin.
-
PART II.-OF VULGAR FRACTIONS.
Of Notation.
(if Reduction.
Of Addition.
Oi subtraction.
Oi Multiplication.

Of Simple Fellowship.
Of Compound Fellowahip.
Of Exchange.
Of the Comparison of Weights and Meaüres.
Of the Double Rule of Three.
Of Conjoined Proportion.
Of Alligation Medial.
. Alcernate.
Of Simgle Porition.
Of Iouble Powition
Of Comparative Arithmetic.
Of Progression, Arithmetical.
\therefore...., Geometrical.
Oi Permutation, or changing the Order of Thing.

Of Division.
Of the Single Rule of Throe Direct.
...... Inverse.
Of the Double Rule of Three.

PART III.-OF DECIMAL FRACTIONS.

Of Notation.
of Addition.
of Subtrartion.
Of Multiplication.
(I) Division
of Reduction.
Of the Siugle Rule of Three Direct.
Of the Double Rule "f Three.
of Converging Seriew, viz.
Of the Square Inont--
...... of a Vulgar Fraction.
..... of a Mixed Number.
Of the Cube Root-
...... of a a Vulgar Fraction.
of a Mixed Number.
Of a Biquadrate Rroot.
Of the Sursolid Root.
Of the Square Cube Root.
Of the Serond Sursolid Root.
Of the Square Biquadrate Root.
Of the Cubed Cube Root.

Of the Square Sursolid Root.
Of the Third Sursolid Root.
Of the Squared Square Cube Joot.
A General Rule for Extracting the Juots of all Powens.
Of Nimple Interest.
()f Annuitier and Peusiong in Arrears.

Of the Preeent Worth of Anuuitiex.
(If Annuities and Leases in Reverkion.
Of Simple Interest for Days.
Of Rebate or Discount.
If Equation of Payments, the true Way.
Of Compound Intereat.
Of Annuities and Pensions in Arrears.
Of the Preoent Worth Annuities.
Of Annuitices and Leaser in Reversion.
Of Purchasing Frechold or real Eatates.
Of Purchasing Freehold Estates in Reveraion.
Of Rebate or Discount.
To find the Value of Timber.

> PART IV-QEESTIONS.

A Collection of Queutions to exercise the	
foregoing Rules.	$\begin{array}{l}\text { A short Collection of pleasant and divert. } \\ \text { ing Queations. }\end{array}$

Addition.
Subtraction.

Multiplication.
Divixion.

TABLE OF CONTENTS OF A NEW AND COMPLETE SYSTEM OF ARITHMETIC BY NICOLAS PIKE.
 Numeration:

Simple Addition. $\quad 17$

Multiplication.
Division. ... 23
Supplement to Contraction in Jiultiplication. 34
Tablee i: Compound Addition . 42 .
Compound Addition... 49
Problems Resulting from the Preceding Rulew. 56
Reduction. 61
Vulgar Fractions. $\quad . \quad$. 0
Decimal Fractions. 85
Federal Money. 96
Derimal Tables... 99
Compound Multiplication . 101
Division . In
Rules for Reducing all the Coins, from Cumada dideorgia; alen Finglieh, Irish, and French Coins and Spanish lollars, each to the par of all the others..... 111
Duodecimals, or Crobs Multiplicstion. I . 23
Single Rule of Three lirert. 125
The Methods of Making Taxes, in a Note......... I:
Single Rule oi Three lirect in Vulgar Fractiona. $1: 36$
To Find the Value of Gold in the Currency of Now Bugland and Virginia.... . Ink
Single Rule of Three direct in Derimaln..... If:

Abbreviation of Vulgar Fractions. 17
Double Rule of Three . 117
Conjoined Proportion. 153
Arbitration of Exchanges. 155
Single Fellowship. 155
Double Fellowahip. or Fellowship with Time....................................... 158

- Fellowship by Decimals.. .

Prsctice... 161
. By Decimals. 189
Form of a Bill of Parcels. 191
Tare and Trett. 192
Involution. ... 194

Table of Powers. 196
Extraction of the Square root. 197
Application and Use of the Square Root... 200
Extraction of the Cube Root.. . . . 203
Application and Use of the Cube Root Para 209
Extraction of the Biquadrate Root.
...... Of the Sursolid, by Approximation 211
Of the Rexots of all Powers 212
Proportion in General 216
Arithmetical Proportion 217
Progremion 219
Genwetrical Proportion. 234
.......... Progreswion 236
Simple Interest 251
........... By Decimala. 255
Ammitiew, or Pensions in Arrears, at Simple Interest 264
Prement Worth of Annuitien at Simplo Interest 265
Discount. 266
..... By Decimsís $\cdot 59$
Bartar 270
lows and (iain 273
Equation of Paymenta 281
...... By Decimala 283
Commisxion or Factorage 284
Brokernge 285
Pulicies of Insurance 286
Comprund literewt. 292
liy llecimala 294
Hincount at Compound Interent 299
Ammitiez, or Pensions in Artears, at componnd Intereat 300
Present Worth of Annuities at Compound Interest 305
Annuities in Reversion at Compound Intereat 309
Purchasing Annuities forever, or Freehold Estates 314
Tahle showing the amount of Lt 1 mm 1 year to 50 318
...... Present worth of $£ 1$ from 1 year to 40 319
...... Amount of \&l Annuity, etc 320
...... Prosent worth of $£ 1$ Annuity, etr $3: 1$
...... Annuity, which £1, will purchase, etc. 322
(inculating Decimals 323
Alligation Medial 398
Alligation Alternate 329
Simple Powition 334
Double Pesition 336
Permutations and ('onibinatious 339
A short method of reducing a Vulgar fraction to a decimal 345
Of finding the duplicate, triplicate, etc., Ratio of two numbers, whose difference is small. 345
To eatimate the diatance of Objects 347
The Ifeight of Objects. 348
Miscellaneous Questions 348
...... Of Gravity 357
...... Of the Fall of Bodiee 358
...... Of Pendulums 362
...... Ot the Lever, or Steelyand 364
...... Of the Wheel and Axle. 365
...... Of the Screw 365
...... Of the Specific Gravities of Bodies 368
Table of Spocific Gravitine
Use of the liarometer in measuring Heights. \cdots
Table of the weights of Sfoney. $3: .5$
Table of Exchango. 36
Ditto. 13:
Table of the value of aundry piecen in the meveral siatem 35
...... Of Commiseitn30
deducted. 3010
Table shewing the number of layafrom any day in one month to any day in any other month.Table of the meanure of Letuth of the principal placen in Eureper compared withthe American lard
Table directing how to biy and well by the Hundred Woisht.$35:$
insComparison of the American foot with the liet of other Countria
Table to cast up Whape of Expermes for a ycar, at as much pre day. Werk. ur month. $\because 5$
..... \therefore to find Wages, or Expenes for a month, week, or day, at mumb in'r year い5
..... Of simple luterest, at 6 per (ent from 1 shilling w $\mathcal{f l}$. Km). and from I day to a year, the intermmiate monthe consisting of 30 dayn omeh 3 in
A Perpetual Almanack 3!
Tablex reducing Troy weight to A voirdupois, and the Contrary 3:!An arcount of the Gregurian Calendar, or New style.
Chronoloxical Problems Cbronological Proberns.W:
Problem 1. To find in which Century the last year is to be lap yar, and th. contrary. $34:$
Prob. 2. To find, with regard to any other years, whether any yar the latip yarar or not. 393
Prob. 3. To find the Dominical Letter arcording to the Julian methexd 14;
Prob. 4. To tind the same according to the (ingturian Metherd ? 4
Prob. 5. To find the Prime or Golden Number. 30%
Prob. 6. To find the Julian Epact 1
Prob. 7. To find the Gregorian EpauTo find the same, forever.: 4
跂
3Prob. 8. To calculate the Meon's age on any given dayProb. 9. To tind the times of the new and full mon and hirst and liwe quartere
Prob. 10. Having the times of the Moon's southing given, to find her agr344
Prob. 11. To find the time of the Moon's Southing. 349
Prob. 12. To find on what day of the week any given day in any month will fall (n)Prob. 13. To find the Cycle of the Sun.
Table of the Dominical Letters according to the C'ycle of Sin 102401
Prob. 14. To find the Year of the Dyonisian Period 412
Prob. 15. To find the year of Indiction. 10
Prob. 16: To find the Julian Period. 103
Prob. 17. To find the Cycle of the Sun, Golden Number, and Indiction for any current year 103
Prob. 18. Having the Cycle of the Sun, Golden Number, and Indiction, to lind the year of Christian Era. 104
Prob. 19. To find the Time of High Water A14.
Prob. 20. To find on what day Easter will happen. 404
Table to find Easter from the year 1753 to 4199. flti
The Use of Logarithms 407 |

TABLE OF CONTENTS OF WARREN COLBURN'S FIRST LESSONS:

PART I.
\therefore I. Addition and muhtraction.
Sir 11. MuJtuplication.
\therefore A. Ill. Divimion - Idea of faction introduced. - I
sur. IV. Fractions; multiphtation of an integrer by a fraction.
sur. V. Principle of fractions applied to larger numbere.
Sa. Vl. Invision of an integer by fraction.
Si.. VIt. Combination of preceding and multipheation table from 10×10 up to (1) $\times 20$.

Si.e Vlll. Reduction of fractions to highor terma and integere to fractions
wis. Multiplication of a fration by an integer.
Ere. X. Moerly drill on Sections IV and IX.
ser. Xl. Division of ano fraction hy mother.
ser Xll linactiona writem in fractional firm.
sor. Slll. Reduction of framene to a common demmanator; adition and abberastion of frmationes.
 iraction.

TABLE OF CONTENTS OF WARREN COLBURN'S SEQUEL.

I. Numeration and notation
11. Addition
111. Multiplication, when the moltiphere is a simgle fignore. .

1V. Compond mumbers. factorx, and multiplication, winn the multiplier ina compound namber.
V. Multiphication, when the multiplier is 10. (MW) I. (KW). ete
VI. Multiplication, when the multiplier is ? IO. $3(\mathrm{~K})$, sk
VII. Multiplication, when the multiplier consinte of any number of hamer.
VIII. Subtraction.

1X. Division, to find how many tines one number is contailuel in another.
X. Division. Explanation of fractiona. Therr molation What is to ber dune with the remainder after ditision.
XI. Diviaion, when the divimer is 10 . J(k), ett.
XII. To find what part of one number another is, or to find the ratio yi one mum. ber to a.uther
XIII. To change an improper fraction to a whole or mixed unmber.
XIV. To change a whole or mixed number to an improper fraction.
XV. To multiply a fraction by a whole number, by multiplying the numerator
XVI. Division, to divide a number into parta. To multiply a whole mumber by a fraction.

IColburn does not give a table of contents in the First lepsons, and this hise imen made from a stuity
of the material given in the rarious sections.
XVII. To divide a fraction by a whole number. To multiply a fraction by a frac tion.
XVIII. To multiply a fraction by dividing the denominator. Two ways to multiply and two waye to divide a fraction.
XIX. Addition and subtraction of fractions. To reduce them to a rommon denominator. To reduce them to lower terms.
XX. Contractions in division.
XXI. How to find the divisors of numbers. To find the greateet common divims of two or more pumbers. To reduce fraitions to their lowest terms.
XXII. To find the least common multiple of two or more numbers. To reduce fractions to the least common denominator.
XXIII. To divide a whole number by a firaction, or a fraction by a fraction, when the purpose is totiod how many timee the diviour is contained in the dividend. To find the ratio of a fraction and a whole number, or of two tractions.
EXIV. To divide a whole number by a fraction, or a fraction by a fraction; a part of a number being given to find the whole. This is on the same principle es that of dividing a number into parts.
XXV. Decimal fractions. Numeration and notation of them.
XXVI. Addition and subtraction of decimals. To change a common fraction to a decimal.
XXVII. Multiplication of decimals.
XXVIII. Division of decimals.
XXIX. Circulating decimals. Proof of multiplication and division hy cesting out 9 'a.

BIBLIOGRAPHY.

The town histories examined are in the library of the American Antiquarian Society, Worcester, Mass. 'This library also has a good collection of arithmetics published before 1840. The Greenwood Collection of Arithmeties in the l'ublic Library of Kansas City, Mo., contains over 200 texts, a large number of which were published between 1830 and 1880. A few rare but important books are to be found in other libraries: Library of Congress, Library of the United States Bureau of Eduratim, Boston Public Library, and Library of thy Chiiversity of Chieago.

(iENERAI,

(iremprod, James M., and Martin, Artemas. Notes on the himtory of American textbooks nn arithmetic. In ${ }^{1}$. S. Hureay of Eduration. Heport of the commieaioner for the year 1888-83, vol. 1, p. 789-5i7. 1897-98, vol. 1, p. 789-804.

Thas is a descriptive hibllography of (exitoxoks on artinmetic by imericen authors before 1892. It is quite complete, esjectall) for alithon wifer inow, and wht ourefulty prepured.

TONN HISTORHES.

Atwater., History of the colnny of New Haven.
Ihase, Gienge Wingate. The history of Haverhill, Matamhumet? from its first ecttlement in 1640 to the year liodo.
Ciurtier, John J. Histury of Newbury.
Felt, Joweph B, Annals of Salem. . History of lywioh, liferx, adad Hamilen.
Fowler, Willian Channey. History of Durham, Connertirut.
Frothingham, Richard. History of 'harleston.
Hudson, Alfred Sereno. The history of Concord. Masa humeths,
Judd, sylveeter. Hishory of Hadley.
Keyser, Nasman H., ased others. History of Old Ciermanterr.s.
Orcuat, Sammel, and Beardsley, Ambmese. Mistary of the old Town of Derby, Conno titut.
Or'utt, William Daua. Good Old Dorchester.
Srhenc'k, E. H. The history of Fairfield, Connerticut.
Slafter, (arlos. The schools and teachers of l)edham, Massarhusette.
Watenn, John F. Annals of Philadelphia.
Winoor, Justin, ed. Memorial histary of Bontom.
TEXTBOUKS OF THE FERIOD.
Adams, Daniel. The acholar's arithmel.: or federal accountant, 1801.' 10 th ed. 1815.
'Has blank spaces for the solution of ine prohiems and examples by the pupil
IOnly a few of the most slginificant texts are listed. For a cumplate list the ramder is referred to the bibliography by Greenwood and Martin.
3 The first date following the Litle of a book is the date of publication of date of first copyright. Other dates refer to revision.
$81758^{\circ}-17-11$

American tutor's aminant ar a compendious symtem of practical arithmetic. ad ad. 1797.
"Artibmetice the tho art of compuitige by numbers."
Conker, Fidwand. Coker's vulgar arithmetio 167%

 of them have mpied ${ }^{\text {. }}$

This lemame a iner goynuter tant
 both practical and theoretical. 1;13.

Ferteral ready rorkner: or trader"A valuable guide in purchaning and melling all kinda

 ed. 1785

 "variety of rame in trude and commerre. 1:29,

Kendal, David. The young lady arithmetic. 170:
"Arithmedic is the art of computang ber figires." birects the stadent to "hewn weltin linery"

Kimber, Empor. Irithmetic made ceny to children: Bcinǵa a collocition of nowfit and familiar examples, metholically arrangmi and under their mapertive herade. 2d ed. 180j. A trailitamalient
 that acience. 1813.
Lee, Chauncey. The American arcompiant. 17a:
 attampt by the author to delmalief all wejphte and measeltex

M'Donald, Alexander. The yonth's axistant: being a plain pasy, and comprohensive guide to practical arithmetic, 1745, 1:59.

The practiosl reasons fer teaching aritbmetic are emptiadem
Pike, Nicolas. A new and complete nystem of arithmetic, compored for the um dider the citizens of the linited States. 1788.
 the Aith. It is the first anthmetio in which the Federal money as piven.
Pike, Stephen. The teacher's aspiatant. 1811. It was rovind in leas ind iss2.
Root, Ersotus. Introduction to arithmetic, for the use of commoniachools. 1785
Garjeant, Thomas. Elementary principles of arithmetic; with their application to the trade and commerce of the United Stales. 1788.
Tample, Samuel. An arithmetical primer for young masters and mises; containing aimply, the first principlea of that mont uneful art. 1809. 48 pp . It is intended to bo sollowed by a more adranced book, Blank speres afe left for the solution of cocemplene

Yinall，John．Frecyptor＇s ansistant．1：82．
Vyw．＇hures．Akey，or the arithmmetician＇in repoajory．oth ed． 1808. 1 ker to the luter＇s ridule．
Walkingame，Frunci Tho tutor＇a amistant；bring a compendium of arithmplic and a mmplete guestion twak．

 the lonited statow，in ita homortic and fomign relations：with forma of wounts，

 in the cymmerie of the limital Statue．Imai，lNit
Heldh，olliver Americanarithmeti－ 1614

 butairal ymass＂

The somh＇a ingtractor in the Engliwh tomgue．1：00）．

いTHER NいいいいE．
－
Ramani，lipury：Amprican journul of ellumann
$:$

furtas Warmen．The dixtrit whowl ai it wan．

cajuri， \mathfrak{t} ．The temding amd himery af mathomation in the finted siatea．Wach．
 entar of informmion．No．3．Incm．

Thwa．Flate 11 ．Filucational legination and adminiatration of colonial goverin－ menta．

Comell，Milliam Mamn．The hisfory of Prmandrania．
（ypheriju lumk．

 Inluestity of chienfro wase examinems
Fianhe Charlew Evans American hiblimpophy．
 firsl hook prinied in Amprica in late．
Jackenn，1．．1．：The exiucational significance of mixleenth rentury arithmetic． 1806.
Johumen，Clifton．Odditime echools and school－lrooke．
A very interacting amount．
Kilpatrick，William H．The Dutch achoiln of New Netherland and Colonial New York．Waihington，Government Printing Office，1912．（U．É．Bureau of Edu－ ration．Bulletin，No．12，1912．）

A ourefully preparad ancount of an intesalve studs．
Littlefield，G．E．Farly New England achools，club of old volumes．Boaton， 1904.
Mariwether，Colyer．Our Colonial curriculum，1607－1776．

Murry, David. History of glucation in New Jersey. W'ashipgton. Government Printing office, 1899. (L'. S. Bureau of Education. Circular of Information. Nin. 1, 1899.)
Powell, Lyman C. 'The history of education in Delaware. Waahington, (invermment Printing Office, 1893. ($\mathrm{C} . \mathrm{S}$. Bureal of Education. Circular of Information, . . . 3, 1893.)
Steiner, B. C. History of education in Marylaud. Washington, (iovernment l'rinting Office, 1894. U. S. Bureau of Education. ('ircular of Information. No. 2, Is 91.1
Tolman, Willian II. History of higher education in Rhokle lsland. Warhing(on), Government Printing Office, 189.4. (U. S. Burcau of Education. Cirrolar of Information, No. 1, 189.4.)
Watson, \mathbf{F}. The heginuings of the teaching of modern subjects in England.

- The English grammar athoole to IGiti, their curriculum and practice.

This and the above book hy the same ibuthor give a good account of contemporary firactice in England.
Wickersham, J. P. History of education in Pennsylvania.
Worceeter Society of Antiquity. Collectimns, wol. 9, Procedings. 188:-1890.

THE BEGINNING OF THE PESTALOZZIAN MOVEMENT IN AMERICA AS APPIIED TO ARITMMETM:
'Barnard's American Journal of Eduration, wh. - . p. 29.4.
This appears to be the most complete hiographical account of Collhirn a arailable.
Biber, E. Benry Pextalozzi, and his phan of education.
Colburn, Warren. First legens in arithmetic on the flan of lerelalozai; with where improvements. 1821.

An edition of 1828 has the title, 'Colhurn's first lessons. Intellectual arithmetic upmen the indur. tiveruethod of instructloti." This title has been retalued. A enjug of tha frst edition is in the limarary of the American Antiguarian Society, Worcester.

- Arithmetic; being a mequel to firat leqenna in arithmetir. $18: 2$.
——. The teaching of arithmetic. An address delivered before the Imerican institite of Instruction in Boeton, August. 18:30.

It was publishod in the proceedings of that societ y and was reprinted in the Elementury school Teacher, June, 1912.
Kriiei, Herman. Pestalozzi: Mis life, work, and infumoce.
One section of the book is devoted to the "Prinelples und method nf lestalozza." A chapter on "Special application of P'astalozti's method" gives f'estalonzi's ideas on number.
Monroe, Will S . Eistory of the Pestalozzian movement in the frited states.
Thls necount deals onlv with grneral features. No mention is made of siarren Conburn and very littio is said concerning the influence of t'estalozzian principles itpon sehool suljects and the methed of taaching.
Peatalozzi, J. II. Anschanngglehre der Zahlenverhaltịiser, fart I.

How Gertnde teaches her children. Trane. by Lucy E. Holland and Fransea (:. Turner. Syracuse, N. Y., C. W. Bardeen.

* An oxcellent account of PcstalozzI's educational theory.

Ünger, Fredrich. Die Methodik der Praktiachen Arithméetik.
A reliable account of the development of arithmetlc as a schoul subject In Germany.

FROM 1821 TO 1892.
ofneral bourceg.
American Journal of Education, vol. 1, 1826.
Connecticut echool docurnent, Nos. 7 and 16.

- These contain reports of surveys of Connectlout schools.

Davies, Charles. The logic and utility of mathematics. 1850. "A full analysis of the science of mathernatica."
Dediraff. The echoolroom guide. 187 .
Foule, William B. The teachè's institute; or familiar hints to young teachers. 1866.

Itrook on the losching of the comman branches.
Greenwod, J. M. Principles of education practically applied. 1887.
Key to Ray's practical arithınetic. 1845. The teaching of arthonetie is discussed tiretty.
Page, David P. 'Theory and practice of tarching. 1.4t:
stexldard, John F ', Mothods of tear hing arithmetir and key to stoddard's American mental arithmetio.

- • ARITHMETIUTESTA ,

Some of the more important nerics of arithmetios have heen dear ribed in ('hapter VIII. The anthors of these series are included in this list and a page reference is given to (hapter l'II. Noattempt has bern made togive a complete list of the arithmetir texts published during the perion. Those intereeted in such a list are reierrel to the bibligraphy liy J. M. (ireenwend and Artemas Martin.
Adams, Daniel. Adamse new arithmetic. 1se7. Sce p. Wo3.
Adans, Freterick A. ('ommon and high achowl arithmotir, 18:6. .
Belfield, H. H. The revised mondel elementary arithnetic. 18 B̧.

Thate, Pliney E:, and Mann, Morace. See 1. 10:3.
Coblb, lyman. Arithmetic. Is: 2

Havies, (harles. sier p. 95.
Dean, Philotus. I'rimary arithmetir, Istil; lutellerthal arithmetic, I86l; Flementary arithmetic. 186s; Intermediate arithmetic; 1865.
Eatun, Jameentewart. Seep. 99.
Emerom, Frudrick. See j, 94.
E:rnst, Henry Arithnetic. 1807.
Feltir, S. A. Primary arithmetic, 1863; New primary, 1880; First lezsons, 1865, 1880; Intetmediate arithmetie, 1869, IN6f; New intermediate, 18:万; New prar-

Fowle, William 13. The rhild's arithnetir, or the elements of calculation, in the spirit of Pextalozzi's methend. 1826.
For the use of chilliten betwien the years of three and six
French, John M. Finst lestons in numbers, 1866; Mental ari!hmetic; 1870; Elementary arithmetic, 1807; ('ommon wehool arithmetic, 1569
Goff, M. B. - Jirat book in arithunetic, 1876: Arithmethal prohlemes. 1877; Efamentary arithmetic, 1888.
Gooulrich, s. (i. Peter Parley's method of tearhing arithmetir to chideren. 1833. See p. 103.
Greenleai, Benjamin. See p. 97.
Cirvesbeck, John. Cominerial apithmetic. 1868.
Hagar, Daniel B. Primary lemons in numbers; 1871; Elementary arithmetic, 1871; Dictation problems and reviews in arithmetic, 1874.
IIanna, J. S. ('omplete ready reckoner. 1871.
Harper and Bree. Two-book beries. 1882.

Hill, Thomas. An elementary arithmetic. 1845.
"It is not the design of this troatise to make crithmetic easy nor to govo such pracifical skill as may be useful in business."
Hooe, James II. Arithmetic. Is8:.
The author at tempted to tollow l'estalozzi's plan.
Jameonn, Richard \therefore. 'Thet bawis of arithmetic. 1807 .

- Kirk, Alfred. Model elementary arithmetic, 1876; Model comphto arithmetic. Is:is. Lemeh, Daniel, and Swan, Robert. Eletoentary intellecthal arithmetie 185:3
Leonard, (eteorge, Jr. A practical treatise wh arithmetic. Is:39
lemmis, Elian. The nlemponte of arithmetic. 1863.

 188:.

 metical exproixer, 1875.
Olney, Jexser. An improsed system of arithmeli.
Orton, Hoy D. Lightning calculator. I Stiti
 18:39; 20th ed., 1847.
Payson, John P. Priuticad arithmetic. $18 x_{0}$.
Peck, William (i. Completo arithmeti- IS7.
 kins. Seep. 103.

Ray, Juseph. See p. 96.
 lectual arithmetio, 1 sisu.

Rodgers, M. H. A notebenk of arithmetieal malem and detinitions latiz.
Ruger, William. A new newtem uf arithmotic. Isea.
Sadler, W: H, and Will, Wi. R. ladmetive arithmetio. ISs.
 arithmetic. 187.

 cott \& Co. It seeing to have been revisen by L. Tulbot and printed in lstl under the titic, "TheWestern practical arithmetic."
Smith, Roswell (:. The little federal calenlator. 183'. (It ntarta, "How many little fingery have you on your right hand" How many on both?'"; Practical and mental arithmetic, designed primeipully tur acompany Iuboll's symten of arith. metic, 18:ti; Practical and mental arithmetic on a new plan, 1827 ; The prondertive arithmetic, 1841.
Stewart, Charles. Ananalytical arithmetio for the use of wobouln and collegen. Isith, 1863, 1874.
Stoddard, John F. See p. 99.
Talbot, John L. The Western practical arithmetic. 1841.
Thomson, James B. See p. 88.
Ticknor, Almon.. Columbian calculatur. 1846.
Towne, Paul Allen. Mental arithmetir. 1870.
Townend, Julits L. Primary arithmetic: 188r; Intermediate arithmetic, 1885; Gramroar-school department, 1885.

Tracy, Calvin. Commercial und mechanical arithmetic. 1851.
Vogdes, William. The I'nited States arithmetic. 1845.
Walton, Gronge A. See p. 103
Wentworth, G. A. The first ateps in number, 1884; Grammar-school arithmatic, 1885; - High school arithmetir, 1881 ; Primary arithmetic, 189]
—— and Peed. E. M. The first wepe in mumber. 1884. This text and the frimary arthmetic ty i. A. Went worth are upon the dirube mothod.
Wherler, II. N. Sembll hesums in arithmetic. 1888 .
"I have tried in all casses to follow the inductive methox of tnstruction as illustrated in Warren Colburn's First Letsans, a thoik which his comfessedty done nore for the cause of education than any - other toxtlook that has "wer lmen pullished " (from the preface.)

Whilr. li. E. A primary arithemetid. latis; Aisintermediate urithmetic, 1870.

There is nu attempt to give a romplete hiblouraphy of recent acientitic studies, sinw this has ben dume hy Mr. Itwell. Whate work is memtioned below.
Barley, W. E. Educational vahme. Thapter \dot{I}_{2}

Manlad of inatructions for giving and acoring the C'ourtin standard teato. Rev. al 1! 114

Whamement of growth and efficioncy in arithmetice Elementary Sohool

Standard mones in arithmetit. Elementary school Temher, November, 1911, " Reliahility of single meanurements with wiandard tests. Elementary Showl Teather. March. 1913.
Flion. (harles W. Edarational riform.

Hart. W. W. Commanity arithnetio for seventh and aphth grader. Vementary

Hawell, Henry Budd. A fommlation stady in the ferlizery of arithonetic. Now Cork, Ma-millan Company: 19/4.
"I very complete rasumf of the extenstre experimental literation" on withmetre. The book rontuias un extensive bldiograpby.
International Commisuion on the Tearhing of Mathemation. Report of the American Commissionars. Washington, (iovernment l'riming Oflice, 1912. (I. S.- Bureau of Eduration Bulletin, No. 14. I912.)

Jesenf, W. A. Girade for introdurtinn of a text in arithmetir. Elementary School Jonarial, 15: 1633, November, 1914.
--. Economy of time in arithmetic. Elementary School Tearber, 14:461-76, June, 1914.
Mc.Murry, Charles A. Sperial method in arithmetic. 1905. Herbartian doctrines applled to urthonets.
---.... The elemente of general methol, 1903. A chapter ls given to correlation.

McLellan, James A.. and Dewey John. The paychology of number. 1895. A constructive interpretation of the nature of the child with respect to number and its epplica. tions to the teaching of arithmetic
Mathematicy in the elementary whools of the Cnited Stater. The Ameriemerport of Committers I and II of the I nternational Commiswion on the Tearhing of Mathe. matics. Wushington, Government Printing Oftice. 1911. il. ․ Burean ni Education.) A comprehonstive survey.
Mathews, Pauline f: Report oi experiment on the value of i lay and games in arithmetioal drill. Elementary Sohowl Teacher 14:314-3:4.
Monroe, Walter S. A report of the use of the courtis atandard reweareh testa in armhmetic in 24 cities. Topeka, Kaus.. 1915. 94 pp. (Kansas State mormal sifum), Emporia. Bulletin. New series, vol. 4, no. 8.)
National Edacation Asweriation. Committee of Fifteren. Repnert on the corrolanfun studies. 1895 .
———— Committee of Ten. Report

- Proceedings.

 p. 204, 300 .

Newcomb, Simon. Methods of teahing arithnetia. Fdhathanal Review, 31:3a350
Parker, Francia W. Talks on pedurghica.
 other form subjects may in rorrelated.

Rice, J. M. Edurational remerch: a tout in arithmetic. Formm. 34: 2xt-297.

Smith, D. F. IIandbook to smithorathmetios. 190).
-_The teaching of arithmetic. $1: 00$.
———The teaching of elcmentary mathenatics. Iton
Stamper, A. W. A textbook on the tearhing of arithmetir lats.
Starch, D. Tranfer of training in arithmetical operations. Journal of Fducatinal Psychology. 1911.
Stone, C. W. Arithmetical abilities and wme factore determining them. lones. A report of an experimental insestikntion.
Suzzallo, Henry. The teaching of primary ari!hmelie. lif?. A critical study of recent tenlencies in mothors
Training of tearhers of elementary and secombary mathmaticy Wiuhington, fioxernment Printing office, 1911. (L. S. Burcau oi Bducation. Bulletin, No i? 1911.)

Walsh, John II. Practical methode in arithmeti- ISII
Wilson, G. M. Course of study in mathematics. C'onnersville. Ind., publice sehouls 1911.

A course of study worked ont by Supt Wilsm and his trachers after examining many cuntres of ... study and texts.
Winch, W. H. Accuracy in school. children. Does improvement in numarial accuracy transfer to arithmetical reawoning? Journal of Educational I'rychology,
1910 . 1910.
-_Further work on numerical accurary in scbool children. Does improvement in numerical accuracy transier's Journal of Educational Psychology, 1911.
Young, J. W. A. The tearhing of mathematics. 1906.

REPRESENTATIVE TEXTS OF THE: PERIOD

Beltield, H. H., and Brooks, Sarah C^{\prime}. The rational arithmetion. Isige
Hall, Frank H. The Werner arithmetios:a three-howh conrea for graded whoole. 1890
 Thesp aritheneties represent the extreme spiral arrangenent.
Mamiton, Samuel. Hamiton's arithmetie lent.
 - - The public erhool arithmetir. I! No:

Myers, Cieorge W. Myers's arithmmiter. I Mo:
Serbey, levi. Elementa of the (irube motheni lsikn
Smith, D. E. Smith's arithmetica. L!et
Smalurorth, G. A., and Stone. J. ('. Tha Somthworth-stone arithmetios 1904
Spur. W. W. Form lesons I8ks.
_.- -- A serien of arithmetics.
The flest twok of the series wias published ill I wij.
Stome, J. I', and Millis, J. F. The Stone-Millis arithmetias 1910
Walsh, John H. Walsh's arithmetice. J8:n.
Wentworth, (i., aml smith, D. F. The Wontwirth-smith arithmaine 1909
Foung, J. W. A., and Jarkson, I. J.. The Ippletom arithmetion I!

1 N1) I: N.

Allimation. : 1 - -30

Bartur. :

Bihlingraphy. lis ltais.

berothe lilwarel. low

Thater. I'. F.. 10.3. 16: II

 t+athing of arithourtit. so an

Burrelariont 141 fi .

Hatien, Charles. 9: !ni.

fordham, Mass. coltmal achools. s..9.
brdmotise nuthon, IEs.
Dh-linitions, Is.
[blatware, colonial sthemen. II.
bonominate mumbers. 2: 26.
Ihevices and drill, 1:0-127
Dewey, John, on psychical and social demand of arithmetic, 130.

- Difyorth. Thomas, extensive une of his ''shoohmanter's Assistant," 17

Dilworth's "icheoflawter's Asuistant," table of contents, 151-15is.

168

INDEX.
Dollar mark, hiator: 26.
Dorchester. Mas.. colomial achools, 10.
Douglas, John, colonial echoolnaster, 11
Drill and devices, 1:0)-127. 145-146.
Duxdecimals. 3:
Duteh New Jork. eduration. irti.
Educationt place of arithmetie in, lif:
Emerwon, Frecherick, 94. 99-1/m). !164-103: 11:-113.
Evolution, 34.
Exchange, 30-3:
Federal mumey, extahishment, w- was.
Fellowship, or partureinip. 2!
Felter. S. A. 104

Goxlrich. S. (i.. 10:S, 10\%)

(ifermwoxl. J. M. estinatie of Jemeph Ray work, 97.

Hall. E. H. and spinal plan of apganization,

Hegher. Jantes, un teathing arithometic, lis.

Indurtive mothent. sio, as

- Integers fundamental oferation for, IS.20

Interent an a motive. $14:-143$.
International commis-ion on the 'Tearhing of Mathemation, and course of etudy, 135-137.
I pewich. Masw.. colenial metheri, 9.

Lomgitude and time. 34

 141.

Mahematics. Hariard college, 4:3.
Mand, llaniel. colonial whoolmaster. 7.
Memoriter method. 50.
Mensuration, 34-35.
Mental arithmetic, 39, 90-91.
Mental discipline, arithmetic as, 84-93.
Metculfe, Michael, coloninal whoulmaster, 9.
Methods of tear-hing, 149.
Monitorial plan of group inatruction, 121.
Mgnitorial nehool. Buston. Mase, , type of clans instruction, 120-121"
Motivation, 87-88, 123-124, 142.
New Amsterdam. See I)utch New York.
New England, attitude toward teaching arithmetic, 6-10.
New Jersey, colonial schools, 11.

\rightarrow
(4ix) 4

[^0]: 1The Dutah Behoolin of Now Nechertands and Colonial Now Yort, p. 200.

 - Jomph Folt: Annah of Belom, D. 7.

[^1]: "Memorial History of Bospon. Vot. I, p., IS.' "Memorlal Hetary of Botan, IV, ast.

 -Op.cic., p. 8 .

[^2]: 1 This number fincludea arlthmotics by the tollowing authors: lsaec Greenwood (1729), Benfanin Deathorn (1789), Alarander Moilomeld (1786), Nlcolas Plke (1788), Thomat Barjeant (1788), Considar aind
 (1780), Eratus Root (1706), James Noyes (1797), Chauncey Leo (1707), WLlam Mins (179) Duvid Kentall (1797), Poter Thep (17es), Zacheriah Jeas (1798), Esakid Little (179p), Nathan Daboll (IT00), David (rook (1800). In his Amerion Bibilography, Evans acoredits ataxt to Jomathan Burnham to 1748 . It has not been possible to verify thls.

 - The names, the statea to which thoy attanded achool, and tive yeare atteoded are given th the Anniyitexl Index to Barnard's A morican Journal of Educetion as follows (the fighes following the datio reter io the volume and peet on which the remintioneot is given): Allen, Mrs. L. L., Massechusetts, 1796-1808, 30:3il; Buckimgham, J. T., Connectlcut, 1750, 14:J29; Buahnill, Rev. H., Connogiggl, 1800, 18:142; (aldwell. C.,
 vanh, 1795, 18:ț1; Devis, Johm, Virginie, 1800, 1s:748; Day, Rev. J., Conpeoticut, 1700, 16:12s; Everett,

 13:7由; Beton, 8. W., New Yorl, 1798, 17:555; Town, 8., Massachusetts, 17R5, 13:737; Websler, D., Now Bampehtro, 1790, 27:282; Wobeter, M., Conneoticut, 1770, 28:197, 13:123.

[^3]: ${ }^{1}$ Only 40 peres are dovoted to arithmotic. Bec Appendix for table of contonts.

[^4]: I E.vans's American Bibllography, Vol. I, D. 272 .
 tThe complete table of contents is given in the A ppendix, p. 152

[^5]: I Examplea of swoh terta are: Arthmatic Mado Easy to Chadren, by Kmmor Kimbeg, second adition, 1805; An Arithmotioal Primer for Young Masters and Missee,' 'by Bamuel Templo, 1809.
 ${ }^{2}$ John Whito: A Practioal Bystem of Montal Arithmotto, or a Now Mothod of Making Calculationa by , the Action of the Mind withourt Pan, Ink, Pancll, or Paper. 1818.

[^6]:

[^7]: 'Jomph T. Buckinghan, in Barnard's Amar. Jour. of Educ., 13: 120.
 John Tileston trught in the North Vritiog Botiool of Bostion from. isy 10 1819. Wm. B. Powit livid trom 17\% to 1808 . Thin would phoct the dete of this sbout 1810.

 $81768^{\circ}-17 \ldots$

[^8]: roprotated is thit, courbery.
 Amer. Jour. of Educ., L875, p II.

[^9]: The date of publication of the Sequel has been erroneously given as 1824 , and one writer has givenit 8s 1826. Neither of these distes is correct. The compiler of this report has in his possession a copy bearing the date of 1822, the date of copyright being October 80 .

[^10]: 1 fidd., p. 800.
 2 TDAO, D. 804.

[^11]: 15.P. Grever: A IIftory of Education in Modera Times, p, is1,

 - Ibid. P. 1 \$6.
 ${ }^{4}$ Ibld , P. ©
 - Zuede, D. 148

[^12]: ${ }^{1}$ How Gertrade Teectes Her Children, p. 200.

[^13]: talns only the first part, which was devoted to the sxercises on the unite tafie.

[^14]: 1 Thts acknowledgment does not appear in the first edition, 1821, but does appear in the editions of 1820 and Izes.

[^15]: "Address, "The Tenching of Arithmetic."

 - Proface to First Lassons.
 - There is a copy of the first edition in the library of the American Antiquarian Eociety at Worester, Mast. The second edition, 1822, had the waine title.

[^16]: A merchant had all his money in bills of the following deecription, one-dollar billo, ten-dollar bills, hundred-dollar billa, thousand-dollar bille, etc.; each kind he kept in a separate box. Another merchant preeented three notee for payment, one 2,873 dollars. another 849 dollars, and anoher 758 dollars. How much was the amount of alf the notes; and how many bills of each sort did he pay, supposing he paid it with the least possible number of bills?

 Additional illustration of the principle of carrying is given by writing the addends in this form: $4000+600+70+3$. And finally when te is ready to state the rule, Colburn says: "From what has been said, it appears that the operation of addition may be reduced to the following rule."
 Multiplication immediately follows addition and is begun with this example: "How much will 4 gallons of molasses come to at 34

[^17]: 'The term "mental artiometic" lecame quite generally used to dedgnate that arithmetio which did not tivivi ve computaluon with written gypuliote, Colkurn and some at her sathors und the term, "intellectual" insteed of "meatal," and atill durars calied thin type of aritimetic, "oral." The upe of the lerm, "mental arith" oice," bas been critucited on the ground that arithmetic which invalven calculations with
 ally led that its ux hare is fustibed and will garro to arold confusion.

[^18]:
 the mental fambines.

[^19]: 1 See the cltations from Davion and Brooks, quoted above.
 \& Clifton Johnson: Old Time Schools and Schoo: Bonky, p. 37.
 The Teacher's Instutute; or Familiar Hints torYoung Teachars, p. 45.

[^20]: 1 Profoce.
 ${ }^{2}$ Jamea M. Oreenwood and Artomas Martin, "Notes on the Histary of American Teitbooks on Arith. metke.';' Rept. U. E. Commis, of Ed., I807-96' 'p. 889.

[^21]: If an apple be worth 3 cents, what is one-third of it worth? What is 2-thirds of it worth?
 What is one-third of 3 ? What is 2-thirde of 3?
 If an orange is worth 3 centa, what part of the orange will 1 cent buy? What part will 2 cents buy?

 1 is what part of $3 ?^{-}$Ans. 1 is the 1 -third of 3 .
 2 is what part of 3 ?. Ans. 2 is the 2 -thirds of 3 ; that is, 2 is 2 times the one-third of 3 .
 If a yard of cloth coat 3 dollars, how much can you buy for 4 dollars? How much for 5 dollars?

 4 are how many times 3? Ans. Once 3 and the thind of 3 .
 5 are how many timee 3 ? Ans. Once 3 and 2 -thirds of 3 .
 6 are how many times 3? 7 are how many times 3?
 8 are how many times 3?. 9 are how many times 3?
 10 are how many times 3? 11 are how many timee 3 ?
 Following this there are problems of division like " 57 are how many times 5 96979890910\%" and problems of multiplication such as " 8 times 6 and 2 -sixths of 6 are how many q " These two questions are then combined in one exercise and in later lessons there are exumples which call for operations of the following types; " 7 is one-

[^22]: 1 Compare them arardien whth the onen uned by Peatalosid. Seo p. 50 . Ray followed Peutalosal even mone chatystion dit Oolburn.

[^23]: Thls same intertogative, or question and answer, syotom was used in Diforth's Bchoolmanter's Amat-

[^24]: ' Connecticut School Documents, No. VII, p. 11 i.
 'Idem, No. $\mathrm{X} \backslash 1$, p. 29.

[^25]: : 讠ol. I, p. 667.
 *Boe W. C. Bagloy: Educational Valuos, p. Wis fit, for a historionl arcount of the reartion againct format dixcipline.
 elucators of the country. Thew have partionter reforence to arlithmotic, 18\%0, p. 11t; 1881, pp. 21, 85, 100. 1Nv2, pp. 617, 620.

 - Soe pp. 120-27 lor thereport if tavestigntions of the teeching of arithmetic to Connecticut.
 "O. F. Bright, "Changet in Echools," Proc. of Nat. Educ. Assoc., 1805, p. 208.
 "Stetamat by Charlee W. Eliot, L8:p Quotad by O. F. Bright, "Changes in Sehoole" Proc. of Nat. Educ. Aasor., 180s, p, 294. Beo sbo, Charles W. Eifot: Educational Relorm, pp. 180-18\%, iddreea, 1000
 ' Report of Committee of Ton, p. 108 '.
 "Bmon Newromb: "Mothode of Toeshing Artimmetic," Educe Rev., val. 31, pp. 350-340 This point of view was oritinally exprosed In 1802 .
 - Bpeoial Method is Arithmertc, 1005, p. 16.

[^26]: ' For the other extrenie sen p. 9i.
 James A. Mcleltan and John Dewey: The Prechologr of Number tens
 -Op.cit., pp. 24, 82, 35 I.
 -Op.ait., p. 82

 - Op. dt.,p. 23.

[^27]:
 tiee J. W. A. loung: The Teerhing of Mathematics, 1908, p. 204; and 1. F. Smith. The Teerling of Arithmetic. 1400, p. Ifti.

 - Training of Touchers of Ehementary and Becoodary Mathematics, IT. S. Bu. Of Ed. Bul. 1911, No. 12, p. IN
 Us: Tewrlers Minual, 1914, p. 2.
 - Op.cit., p. 2.

[^28]: I Op. cit., p. 3.

 - 8eo page 128.

 Proc. Nat. Ed. Assoc., 1805, pp. 300-501.
 4 Iod., p. 200.

[^29]: 1 U. B. Bu. of Educ., But., 1911, No. 13.

[^30]: 1 A number of such games are described ln The Teaching of Arthmotic, by D. E. 8 mith, ch. It
 2 gee p. 117 . : 8ee p. 117.

[^31]: ${ }^{1}$ Mathemstics in tho Elementary Bchoois of the United Btaten, U. B. Bu. of Educ. Bul., No. 13, 1911, p. 17. ${ }^{1}$ W. A. Jessup: Economy of Time In Arithmotic, Elo. Sch. Tesoh, Val. XIV, p. 461. .

[^32]: ${ }^{1}$ Op. cit., pp. 18-19.
 1 W. A. Jessip: Grade for introduction of a Text in Arithmethe. Fil. Bch. Jour., Vol. XV, p. 163 (Nov., 1914).

 Beo Mathematics in the Elementary Schools of the United States. U. E. Bu. of Educ., Bul. No. 13, 1911, pp. 19-32.

 - Gee p. 82

[^33]: ${ }^{1}$ D. E. Bmith: The Teaohing of Elementery Mathematica, p. 80.

[^34]: ${ }^{1}$ See D. E. Braith: The Teaching of Elementary Mathematics; McMurry: Special Methodin Arithmetic: Helelian and Dewey: Paychology of Number. It is also true that, In its entirety, the method did not gain eny considerable prestige.

[^35]:

[^36]: '8trayer: A Brief Course in the Teaching Process, p. 280.' *The Teaching of Arithmetic, p. 87.

[^37]: IW. A. Jemab, "Roonomy of TIm in drtamgic," Elamentery Bohool Teacher, Val. XIV, D. ©74.

[^38]: 1"Educational Resiourch, A Tast in Arithmetc," The Forum, XXXIV: 281-297. "Causes of Sumens and Fature in Arithmetic," The Forum, XXXIV: pp. 437-452.

 - Bee bibliography for a list of his published matoria).
 - Arthmotical Abllities end Bome F?rors Determining Thiem.
 ${ }^{4}$ Manual of Instructions for Oiving ve Courtis Btendard Teats, Department of Cooparative Research, Dotrolt. 4 leo the Courtin Grenderd Preotioe Twis, World Book Co.

